跳到主要內容

dcmj2pnm (1) - Linux Man Pages

dcmj2pnm: Convert DICOM images to PGM/PPM, PNG, TIFF, JPEG or BMP

 

NAME

dcmj2pnm - Convert DICOM images to PGM/PPM, PNG, TIFF, JPEG or BMP  

SYNOPSIS



dcmj2pnm [options] dcmfile-in [bitmap-out]

DESCRIPTION

The dcmj2pnm utility reads a DICOM image, converts the pixel data according to the selected image processing options and writes back an image in the well-known PGM/PPM (portable gray map / portable pix map), PNG, TIFF, JPEG (Joint Photographic Experts Group) or Windows BMP format. This utility supports uncompressed as well as JPEG and RLE compressed DICOM images.  

PARAMETERS



dcmfile-in  DICOM input filename to be converted

bitmap-out  output filename to be written (default: stdout)

OPTIONS


general options


  -h    --help
          print this help text and exit

        --version
          print version information and exit

        --arguments
          print expanded command line arguments

  -q    --quiet
          quiet mode, print no warnings and errors

  -v    --verbose
          verbose mode, print processing details

  -d    --debug
          debug mode, print debug information

  -ll   --log-level  [l]evel: string constant
          (fatal, error, warn, info, debug, trace)
          use level l for the logger

  -lc   --log-config  [f]ilename: string
          use config file f for the logger

input options


input file format:

  +f    --read-file
          read file format or data set (default)

  +fo   --read-file-only
          read file format only

  -f    --read-dataset
          read data set without file meta information

input transfer syntax:

  -t=   --read-xfer-auto
          use TS recognition (default)

  -td   --read-xfer-detect
          ignore TS specified in the file meta header

  -te   --read-xfer-little
          read with explicit VR little endian TS

  -tb   --read-xfer-big
          read with explicit VR big endian TS

  -ti   --read-xfer-implicit
          read with implicit VR little endian TS

image processing options


frame selection:

  +F    --frame  [n]umber: integer
          select specified frame (default: 1)

  +Fr   --frame-range  [n]umber [c]ount: integer
          select c frames beginning with frame n

  +Fa   --all-frames
          select all frames

rotation:

  +Rl   --rotate-left
          rotate image left (-90 degrees)

  +Rr   --rotate-right
          rotate image right (+90 degrees)

  +Rtd  --rotate-top-down
          rotate image top-down (180 degrees)

flipping:

  +Lh   --flip-horizontally
          flip image horizontally

  +Lv   --flip-vertically
          flip image vertically

  +Lhv  --flip-both-axes
          flip image horizontally and vertically

scaling:

  +a    --recognize-aspect
          recognize pixel aspect ratio (default)

  -a    --ignore-aspect
          ignore pixel aspect ratio when scaling

  +i    --interpolate  [n]umber of algorithm: integer
          use interpolation when scaling (1..4, default: 1)

  -i    --no-interpolation
          no interpolation when scaling

  -S    --no-scaling
          no scaling, ignore pixel aspect ratio (default)

  +Sxf  --scale-x-factor  [f]actor: float
          scale x axis by factor, auto-compute y axis

  +Syf  --scale-y-factor  [f]actor: float
          scale y axis by factor, auto-compute x axis

  +Sxv  --scale-x-size  [n]umber: integer
          scale x axis to n pixels, auto-compute y axis

  +Syv  --scale-y-size  [n]umber: integer
          scale y axis to n pixels, auto-compute x axis

color space conversion (compressed images only):

  +cp   --conv-photometric
          convert if YCbCr photometric interpretation (default)

  +cl   --conv-lossy
          convert YCbCr to RGB if lossy JPEG

  +cg   --conv-guess
          convert to RGB if YCbCr is guessed by library

  +cgl  --conv-guess-lossy
          convert to RGB if lossy JPEG and YCbCr is
          guessed by the underlying JPEG library

  +ca   --conv-always
          always convert YCbCr to RGB

  +cn   --conv-never
          never convert color space

modality LUT transformation:

  -M    --no-modality
          ignore stored modality LUT transformation

  +M    --use-modality
          use modality LUT transformation (default)

VOI LUT transformation:

  -W    --no-windowing
          no VOI windowing (default)

  +Wi   --use-window  [n]umber: integer
          use the n-th VOI window from image file

  +Wl   --use-voi-lut  [n]umber: integer
          use the n-th VOI look up table from image file

  +Wm   --min-max-window
          compute VOI window using min-max algorithm

  +Wn   --min-max-window-n
          compute VOI window using min-max algorithm,
          ignoring extreme values

  +Wr   --roi-min-max-window  [l]eft [t]op [w]idth [h]eight: integer
          compute ROI window using min-max algorithm,
          region of interest is specified by l,t,w,h

  +Wh   --histogram-window  [n]umber: integer
          compute VOI window using Histogram algorithm,
          ignoring n percent

  +Ww   --set-window  [c]enter [w]idth: float
          compute VOI window using center c and width w

  +Wfl  --linear-function
          set VOI LUT function to LINEAR

  +Wfs  --sigmoid-function
          set VOI LUT function to SIGMOID

presentation LUT transformation:

  +Pid  --identity-shape
          set presentation LUT shape to IDENTITY

  +Piv  --inverse-shape
          set presentation LUT shape to INVERSE

  +Pod  --lin-od-shape
          set presentation LUT shape to LIN OD

overlay:

  -O    --no-overlays
          do not display overlays

  +O    --display-overlay  [n]umber: integer
          display overlay n (0..16, 0=all, default: +O 0)

  +Omr  --ovl-replace
          use overlay mode "Replace"
          (default for Graphic overlays)

  +Omt  --ovl-threshold
          use overlay mode "Threshold Replace"

  +Omc  --ovl-complement
          use overlay mode "Complement"

  +Omv  --ovl-invert
          use overlay mode "Invert Bitmap"

  +Omi  --ovl-roi
          use overlay mode "Region of Interest"
          (default for ROI overlays)

  +Osf  --set-foreground  [d]ensity: float
          set overlay foreground density (0..1, default: 1)

  +Ost  --set-threshold  [d]ensity: float
          set overlay threshold density (0..1, default: 0.5)

display LUT transformation:

  +Dm   --monitor-file  [f]ilename: string
          calibrate output according to monitor characteristics
          defined in f

  +Dp   --printer-file  [f]ilename: string
          calibrate output according to printer characteristics
          defined in f

  +Da   --ambient-light  [a]mbient light: float
          ambient light value (cd/m^2, default: file f)

  +Di   --illumination  [i]llumination: float
          illumination value (cd/m^2, default: file f)

  +Dn   --min-density  [m]inimum optical density: float
          Dmin value (default: off, only with +Dp)

  +Dx   --max-density  [m]aximum optical density: float
          Dmax value (default: off, only with +Dp)

  +Dg   --gsd-function
          use GSDF for calibration (default for +Dm/+Dp)

  +Dc   --cielab-function
          use CIELAB function for calibration

compatibility:

  +Ma   --accept-acr-nema
          accept ACR-NEMA images without photometric
          interpretation

  +Mp   --accept-palettes
          accept incorrect palette attribute tags
          (0028,111x) and (0028,121x)

  +Mc   --check-lut-depth
          check 3rd value of the LUT descriptor, compare
          with expected bit depth based on LUT data

  +Mm   --ignore-mlut-depth
          ignore 3rd value of the modality LUT descriptor,
          determine bits per table entry automatically

  +Mv   --ignore-vlut-depth
          ignore 3rd value of the VOI LUT descriptor,
          determine bits per table entry automatically

TIFF format:

  +Tl   --compr-lzw
          LZW compression (default)

  +Tr   --compr-rle
          RLE compression

  +Tn   --compr-none
          uncompressed

  +Pd   --predictor-default
          no LZW predictor (default)

  +Pn   --predictor-none
          LZW predictor 1 (no prediction)

  +Ph   --predictor-horz
          LZW predictor 2 (horizontal differencing)

  +Rs   --rows-per-strip  [r]ows: integer (default: 0)
          rows per strip, default 8K per strip

PNG format:

  +il   --interlace
          create interlaced file (default)

  -il   --nointerlace
          create non-interlaced file

  +mf   --meta-file
          create PNG file meta information (default)

  -mf   --meta-none
          no PNG file meta information

JPEG format:

  +Jq   --compr-quality  [q]uality: integer (0..100, default: 90)
          quality value for compression (in percent)

  +Js4  --sample-444
          4:4:4 sampling (no subsampling)

  +Js2  --sample-422
          4:2:2 subsampling (horizontal subsampling of
          chroma components, default)

  +Js1  --sample-411
          4:1:1 subsampling (horizontal and vertical
          subsampling of chroma components)

other transformations:

  +G    --grayscale
          convert to grayscale if necessary

  +P    --change-polarity
          change polarity (invert pixel output)

  +C    --clip-region  [l]eft [t]op [w]idth [h]eight: integer
          clip image region (l, t, w, h)

output options


general:

  -im   --image-info
          print image details (requires verbose mode)

  -o    --no-output
          do not create any output (useful with -im)

image format:

  +op   --write-raw-pnm
          write 8-bit binary PGM/PPM (default for files)

  +opb  --write-8-bit-pnm
          write 8-bit ASCII PGM/PPM (default for stdout)

  +opw  --write-16-bit-pnm
          write 16-bit ASCII PGM/PPM

  +opn  --write-n-bit-pnm  [n]umber: integer
          write n-bit ASCII PGM/PPM (1..32)

  +ob   --write-bmp
          write 8-bit (monochrome) or 24-bit (color) BMP

  +obp  --write-8-bit-bmp
          write 8-bit palette BMP (monochrome only)

  +obt  --write-24-bit-bmp
          write 24-bit truecolor BMP

  +obr  --write-32-bit-bmp
          write 32-bit truecolor BMP

  +ot   --write-tiff
          write 8-bit (monochrome) or 24-bit (color) TIFF

  +on   --write-png
          write 8-bit (monochrome) or 24-bit (color) PNG

  +oj   --write-jpeg
          write 8-bit lossy JPEG (baseline)

NOTES

The following preferred interpolation algorithms can be selected using the --interpolate option:

1 = free scaling algorithm with interpolation from pbmplus toolkit
2 = free scaling algorithm with interpolation from c't magazine
3 = magnification algorithm with bilinear interpolation from Eduard Stanescu
4 = magnification algorithm with bicubic interpolation from Eduard Stanescu
The --write-tiff option is only available when DCMTK has been configured and compiled with support for the external libtiff TIFF library. The availability of the TIFF compression options depends on the libtiff configuration. In particular, the patented LZW algorithm may not be available.
The --write-png option is only available when DCMTK has been configured and compiled with support for the external libpng PNG library. Option --interlace enables progressive image view while loading the PNG file. Only a few applications take care of the meta info (TEXT) in a PNG file.  

TRANSFER SYNTAXES

dcmj2pnm supports the following transfer syntaxes for input (dcmfile-in):


LittleEndianImplicitTransferSyntax             1.2.840.10008.1.2
LittleEndianExplicitTransferSyntax             1.2.840.10008.1.2.1
DeflatedExplicitVRLittleEndianTransferSyntax   1.2.840.10008.1.2.1.99 (*)
BigEndianExplicitTransferSyntax                1.2.840.10008.1.2.2
JPEGProcess1TransferSyntax                     1.2.840.10008.1.2.4.50
JPEGProcess2_4TransferSyntax                   1.2.840.10008.1.2.4.51
JPEGProcess6_8TransferSyntax                   1.2.840.10008.1.2.4.53
JPEGProcess10_12TransferSyntax                 1.2.840.10008.1.2.4.55
JPEGProcess14TransferSyntax                    1.2.840.10008.1.2.4.57
JPEGProcess14SV1TransferSyntax                 1.2.840.10008.1.2.4.70
RLELosslessTransferSyntax                      1.2.840.10008.1.2.5

(*) if compiled with zlib support enabled  

LOGGING

The level of logging output of the various command line tools and underlying libraries can be specified by the user. By default, only errors and warnings are written to the standard error stream. Using option --verbose also informational messages like processing details are reported. Option --debug can be used to get more details on the internal activity, e.g. for debugging purposes. Other logging levels can be selected using option --log-level. In --quiet mode only fatal errors are reported. In such very severe error events, the application will usually terminate. For more details on the different logging levels, see documentation of module 'oflog'.
In case the logging output should be written to file (optionally with logfile rotation), to syslog (Unix) or the event log (Windows) option --log-config can be used. This configuration file also allows for directing only certain messages to a particular output stream and for filtering certain messages based on the module or application where they are generated. An example configuration file is provided in /logger.cfg).  

COMMAND LINE

All command line tools use the following notation for parameters: square brackets enclose optional values (0-1), three trailing dots indicate that multiple values are allowed (1-n), a combination of both means 0 to n values.
Command line options are distinguished from parameters by a leading '+' or '-' sign, respectively. Usually, order and position of command line options are arbitrary (i.e. they can appear anywhere). However, if options are mutually exclusive the rightmost appearance is used. This behaviour conforms to the standard evaluation rules of common Unix shells.
In addition, one or more command files can be specified using an '@' sign as a prefix to the filename (e.g. @command.txt). Such a command argument is replaced by the content of the corresponding text file (multiple whitespaces are treated as a single separator unless they appear between two quotation marks) prior to any further evaluation. Please note that a command file cannot contain another command file. This simple but effective approach allows to summarize common combinations of options/parameters and avoids longish and confusing command lines (an example is provided in file /dumppat.txt).  

ENVIRONMENT

The dcmj2pnm utility will attempt to load DICOM data dictionaries specified in the DCMDICTPATH environment variable. By default, i.e. if the DCMDICTPATH environment variable is not set, the file /dicom.dic will be loaded unless the dictionary is built into the application (default for Windows).
The default behaviour should be preferred and the DCMDICTPATHenvironment variable only used when alternative data dictionaries are required. The DCMDICTPATH environment variable has the same format as the Unix shell PATH variable in that a colon (':') separates entries. On Windows systems, a semicolon (';') is used as a separator. The data dictionary code will attempt to load each file specified in the DCMDICTPATH environment variable. It is an error if no data dictionary can be loaded.  

FILES

/camera.lut - sample characteristics file of a camera
/monitor.lut - sample characteristics file of a monitor
/printer.lut - sample characteristics file of a printer
/scanner.lut - sample characteristics file of a scanner  

SEE ALSO

dcm2pnm(1), img2dcm(1)  

COPYRIGHT

Copyright (C) 2001-2010 by OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany.

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計 — 說服客戶與老闆、跟工程師溝通、強化設計概念的有感心理學 — 情況 1 : 為何要留那麼多空白? 害我還要滾動滑鼠(掀桌) 情況 2 : 為什麼不能直接用一頁展現? 把客戶的需求塞滿不就完工啦! (無言) 情況 3: 這種設計好像不錯,但是為什麼要這樣做? (直覺大神告訴我這樣設計,但我說不出來為什麼..) 雖然世界上有許多 GUI 已經走得又長又遠又厲害,但別以為這種古代人對話不會出現,一直以來我們只是習慣這些 GUI 被如此呈現,但為何要這樣設計我們卻不一定知道。 由於 完形心理學 歸納出人類大腦認知之普遍性的規則,因此無論是不是 UI/UX 設計師都很適合閱讀本篇文章。但還是想特別強調,若任職於傳統科技公司,需要對上說服老闆,需要平行說服(資深)工程師,那請把它收進最愛;而習慣套用設計好的 UI 套件,但不知道為何這樣設計的 IT 工程師,也可以透過本文來強化自己的產品說服力。 那就開始吧~(擊掌) 完形心理學,又稱作格式塔(Gestalt)心理學,於二十世紀初由德國心理學家提出 — 用以說明人類大腦如何解釋肉眼所觀察到的事物,並轉化為我們所認知的物件。它可說是現代認知心理學的基礎,其貫徹的概念就是「整體大於個體的總合 “The whole is other than the sum of the parts.” —  Kurt Koffka」。 若深究完整的理論將會使本文變得非常的艱澀,因此筆者直接抽取個人認為與 UI 設計較為相關的 7 個原則(如下),並搭配實際案例做說明。有興趣了解全部理論的話可以另外 Google。 1. 相似性 (Similarity)  — 我們的大腦會把相似的事物看成一體 如果數個元素具有類似的尺寸、體積、顏色,使用者會自動為它們建立起關聯。這是因為我們的眼睛和大腦較容易將相似的事物組織在一起。如下圖所示,當一連串方塊和一連串的圓形並排時,我們會看成(a)一列方塊和兩列圓形(b)一排圓形和兩排三角形。 對應用到介面設計上,FB 每則文章下方的按鈕圖標(按讚 Like / 留言Comment / 分享 Share)雖然功能各不相同,但由於它們在視覺上顏色、大小、排列上的相似性,用戶會將它們視認為...