跳到主要內容

Give Your Raspberry Pi Smart Vision

Give Your Raspberry Pi Smart Vision

What is Google Cloud Vision API? Check out the video by Google here:

Use Google Cloud Vision on the Raspberry Pi to take a picture with the Raspberry Pi Cameraand classify it with the Google Cloud Vision API.   First, we’ll walk you through setting up the Google Cloud Platform.
Next, we will use the Raspberry Pi Camera to take a picture of an object, and then use the Raspberry Pi to upload the picture taken to Google Cloud.
Finally, we can analyze the picture in the cloud, and the cloud will either try to label the picture (tell us in text what’s going on in the picture), or try to find logos in the picture (company logos that are in the picture) or analyze faces in the picture (tell us everything from emotions on the face to where the face is on the picture).  Skynet here we come!

raspberry-pi-camera-and-ribbon A camera for the Google Cloud Vision on the Raspberry Pi
These directions are meant to simplify getting started with Cloud Vision on your Raspberry Pi.  They are derived from directions found here but modified to work with the Raspberry Pi, and simplify set up.  We will use Google Cloud Vision on the Raspberry Pi to detect images with these three python examples.

raspberry-pi-b-angled-stylizedTools

The Google Cloud Account is free for 60 days.  After 60 days, you will be charged based on usage.  You can create an account here with either your Google or Gmail login. Google offers the first 60 days for free.
GoPiGo is analyzed by Google Cloud Vision using the Raspberry PI.
In this picture we’ve asked Google Cloud Vision to analyze the GoPiGo on the left, with the returned text response on the right.  It returns “labels” (the things it sees in the picture) such as “vehicle”, “wheel”, “toy”, “product”, and “model car”.  Pretty good job Google!

Google Cloud Set Up

The first step is to set up a Google Cloud Account.  You can create an account here. You can create an account here with either your Google or Gmail login. Google offers the first 60 days for free.
After you’ve created your account, you can set up a project and enable billing.  First, click here to go to the Google Cloud Projects Page.
Create a new project.
Create a new Project in Google Projects
In our example, we named it “vision1”
Create a new Project in Google Projects

Name the new project vision1
You will need to enable billing for your account (you won’t be charged).  You can do this by clicking here.  Go to the Cloud Platform Console here.  Select the project “vision1” and click the hamburger in the upper left hand corner of the page.
Select Billing on the left hand side.  From here, you can enable billing on your Google Cloud account.
Finally, we’ll enable the API.  Click here to enable the API.  Select the “vision1” account we created.  Click “Continue”.  You should get a message that API is enabled.

Optional: Test the Account

Now that the account is setup, why not upload an image from your computer and test it here?  You can follow this tutorial to try out a few images and see what Google thinks they are!
camel
Use our picture above.  Is it an animal? A reptile?  Google will tell you!

Getting a JSON Key

Now we want to get a JSON key to put on our Raspberry Pi.  This JSON key will handle all the authentication to use our Google Cloud Account.  Instead of a password, we can use the file to authenticate our account on the Raspberry Pi.
Caution: You should be careful where you store this key.  Be sure to change the password on your Raspberry Pi before putting the JSON key on it, leaving your JSON key unprotected could expose you to something malicious!  In the command line type:
sudo passwd
And follow the prompts to change the password on the Raspberry Pi.
Head back to the Console in Google Cloud.  Find the box titled “Use Google APIs” and click “Enable and manage APIs”
Enable Google APIs for the Raspberry Pi
Click “Credentials” and Create Credentials.  Credentials is on the left hand side, with a picture of a key next to it.
Create Credentials
a3

Select “Create an Service Account Key”. See more about what we’re doing here.
Create Service Account Key for Raspberry Pi Google Cloud
Under “Service Account” Select “New Service Account”.  We’ll give it a name, “vision”
Create New Service account.
Finally, create a role.  We’ll give it full access, so select “Project” and “Owner” to give the Pi Full access to all resources.
Create a role
A popup should come up telling you you have created a new key, and an automatic download of the JSON key should begin.  Keep track of this file!
json-key-has-been-generated
That should be it, you should have a service account key!
You should now use an FTP program (such as FileZilla) or Samba (see our tutorial here!) to move the JSON file over to your Raspberry Pi.  Place the JSON file in the home directory/home/pi

Set Up the Hardware

The hardware is pretty simple!  We’ll be using a Raspberry Pi Camera with the Raspberry Pi, here are some directions on setting up the camera.
close_camera_port
These Raspberry Pi Camera setup directions assume you’re using Raspbian for Robots on your SD Card.  You can buy an SD Card with Raspbian for Robots on itor you can download it for free and install it using our directions here.  If you’re not using Raspbian for Robots, you will need to take additional steps to enable and setup your camera; here are some directions on setting up the camera.

Prepare the Raspberry Pi

In this project, we’re assuming you’re using our image, Raspbian for Robots.  If you’re not, you can download it here!
Next, we’ll upgrade Pip.  Pip is a package manager for python language installations.  Note, you should have Pip installed (it comes installed on Raspbian for Robots); if you don’t upgrade, you will get an error on installation!
 sudo pip install --upgrade pip
 sudo apt-get install libjpeg8-dev
Next, install Google API Python Client.   Again in the command line, run:
sudo pip install --upgrade google-api-python-client
Next, install Python Imaging Library.  Again in the command line, run:
sudo pip install --upgrade Pillow
Install Python Picamera:
sudo apt-get install python-picamera
Turn on Super User.  In the command line, type the command “su”:
su
You’ll be prompted for your password; this is the password you used to login to your Raspberry Pi.
In the home directory, we will make the JSON file available to any application we’re running.  Run the command:
export GOOGLE_APPLICATION_CREDENTIALS=filename.json
Be sure to substitute your JSON filename in this command with the name of the file you have on your Raspberry Pi.

Optional: Make Credentials Permanent

You can also make the Google Application Credentials permanent.  You can make the JSON credentials from Google accessible to any python program running on your Raspberry Pi.
First, open the bashrc file:
sudo nano ~/.bashrc
Scroll to the very bottom of the file, and add the line:
GOOGLE_APPLICATION_CREDENTIALS="/home/pi/vision123.json"
Be sure to replace the variable “vision123” with the name of your file.
Now, load the credential by typing in the command line:
source ~/.bashrc
Finally, confirm that the credentials are set:
echo $GOOGLE_APPLICATION_CREDENTIALS.
This should return the file path and name:  ‘/home/pi/vision123.json”

Get the Example Code

sudo git clone https://github.com/DexterInd/GoogleVisionTutorials

Detect a Logo

raspberry-pi-gopigo-robot-with-google-vision-reading-raspberry-pi-logo
First, we’ll try to get the Raspberry Pi to detect the Raspberry Pi Logo.  We’ll use the big Raspberry Pi label on the Raspberry Pi Box.  Set the Pi box about 1 ft from the camera.  We’ll be propping up the camera with a Raspberry Pi Robot, the GoPiGo.  It holds the camera in place with the acrylic body, and we will use it later for some fun projects!
You might want to take a test picture to make sure the label is visible.  In the command line, run
raspistill -o cam.jpg

If the picture looks ok, we’ll move along!
image

We’ll go into super user mode on the Pi.
su
You may need to runsudo su.  We’ll make our JSON credentials available.  In the command line, type:
export GOOGLE_APPLICATION_CREDENTIALS=filename.json
And now, in the example directory, run:
python camera-vision-logo.py
You should get “Raspberry Pi” back!
raspberry-pi-box-with-google-vision
Exciting stuff!  Now you can go around the house looking for more logos!

Label Pictures

One of the cool things you can do with Google Vision is get the cloud to figure out what’s in the picture you take.  Let’s take a picture of a GoPiGo Wheel and see what the cloud thinks it is.
Set up the camera and run the sample program.  Again, we’ll be holding the camera in place with the GoPiGo robot kit.
raspberry-pi-gopigo-robot-with-google-vision
With the camera set up, we’ll take a test picture.  Looks like the wheel is in there.
image-of-gopigo-wheel-with-raspberry-pi-camera-using-google-cloud-vision
In this sample program we’ll return the entire JSON response.  We get a few interesting results from the picture:  “yellow” (with an 80% score), “wheel”, “product”, “tire”, “toy” and “automotive tire”.

google-vision-label-detection-wheel-detection

Facial Detection With the Raspberry Pi

Here’s the scary part!  Let’s detect a face and see if Google can detect some emotions!  With Google Cloud Vision you can detect a range of emotions, headwear, some head coordinates, and other fun data.  For this part, I made a special selfie-Pi using the GrovePi Case.
raspberry-pi-grovepi-robot-with-google-vision Google Cloud Vision on the Raspberry Pi selfie hardware!
I ran the program in the command line:
python camera-vision-face.py
Here’s the picture I took:
Work is so much fun! Google Cloud Vision on the Raspberry Pi takes a picture an analyzes a face!
“Work is so much fun!”
Clearly I’m trying to smile a little for the camera!  The response Google gives for facial analysis is pretty long, the JSON is very detailed, so I’m pulling the highlights below:
face-annotations-1
According to Google Vision, I’m not likely to be Angry (VERY_UNLIKELY)
face-annotations-2
I’m not likely to be wearing headwear,  however, it is possible that I’ve got joy (joyLikelihood is “POSSIBLE”).
face-annotations-3
Finally, I’m not likely to be sorrowful, and I’m not likely to be surprised.  These are just some of the emotions that Google Cloud Vision will scan faces for and return information on.

raspberry-pi-camera-on-gopigo-no-servo-front-view Google Cloud Vision on the Raspberry PiConclusion

Google Cloud Vision is a really fun service to just play around with!  Google Cloud Vision on the Raspberry Pi is perfect for projects with the Raspberry Pi and Raspberry Pi Camera, and adds in-context vision for the Raspberry Pi.
dex-black-with-white-face-analyzed-by-google-cloud-vision
Above is a picture of “Dex” our company mascot, analyzed by Google for labels.  You can see the computer correctly analyzes it as “electronics” and “technology”!
Troubleshooting
A few issues we’ve run into that might help you!
Optimal image size:  The optimal image size for face recognition with Google Vision is 1600 x 1200 – you can set this using the python lines
camera = picamera.PiCamera()
camera.resolution = (1600, 200)
Clock and Date Issues:  For proper authentication with the Google Cloud services, your clock must be correct (or darn near correct within about 12 hours).  If it is not, you will see the following error:
raise HttpAccessTokenRefreshError(error_msg, status=resp.status)
oauth2client.client.HttpAccessTokenRefreshError: invalid_grant: Invalid JWT: Token must be a short-lived token and in a reasonable timeframe
If the python example throws this error, you need to update your clock.  This can be tricky: it should be automatically updated if you boot the Pi while plugged into an ethernet network.  However, if you are using wifi, or your network isn’t working properly, you can set the Raspberry Pi time manually with the command:
date -u 110316262016
This is using the format “MMDDhhmmCCYY” where M is the month, D is the day, h is the hour, m is the minute, C is the century (probably 20), and Y is the year (in 2016, this is 16).

Questions?

Learn More!

If you liked this tutorial, consider buying the SD Card with Raspbian for Robots hereRaspberry Pi Camera here and the GoPiGo Starter kit here.

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計 — 說服客戶與老闆、跟工程師溝通、強化設計概念的有感心理學 — 情況 1 : 為何要留那麼多空白? 害我還要滾動滑鼠(掀桌) 情況 2 : 為什麼不能直接用一頁展現? 把客戶的需求塞滿不就完工啦! (無言) 情況 3: 這種設計好像不錯,但是為什麼要這樣做? (直覺大神告訴我這樣設計,但我說不出來為什麼..) 雖然世界上有許多 GUI 已經走得又長又遠又厲害,但別以為這種古代人對話不會出現,一直以來我們只是習慣這些 GUI 被如此呈現,但為何要這樣設計我們卻不一定知道。 由於 完形心理學 歸納出人類大腦認知之普遍性的規則,因此無論是不是 UI/UX 設計師都很適合閱讀本篇文章。但還是想特別強調,若任職於傳統科技公司,需要對上說服老闆,需要平行說服(資深)工程師,那請把它收進最愛;而習慣套用設計好的 UI 套件,但不知道為何這樣設計的 IT 工程師,也可以透過本文來強化自己的產品說服力。 那就開始吧~(擊掌) 完形心理學,又稱作格式塔(Gestalt)心理學,於二十世紀初由德國心理學家提出 — 用以說明人類大腦如何解釋肉眼所觀察到的事物,並轉化為我們所認知的物件。它可說是現代認知心理學的基礎,其貫徹的概念就是「整體大於個體的總合 “The whole is other than the sum of the parts.” —  Kurt Koffka」。 若深究完整的理論將會使本文變得非常的艱澀,因此筆者直接抽取個人認為與 UI 設計較為相關的 7 個原則(如下),並搭配實際案例做說明。有興趣了解全部理論的話可以另外 Google。 1. 相似性 (Similarity)  — 我們的大腦會把相似的事物看成一體 如果數個元素具有類似的尺寸、體積、顏色,使用者會自動為它們建立起關聯。這是因為我們的眼睛和大腦較容易將相似的事物組織在一起。如下圖所示,當一連串方塊和一連串的圓形並排時,我們會看成(a)一列方塊和兩列圓形(b)一排圓形和兩排三角形。 對應用到介面設計上,FB 每則文章下方的按鈕圖標(按讚 Like / 留言Comment / 分享 Share)雖然功能各不相同,但由於它們在視覺上顏色、大小、排列上的相似性,用戶會將它們視認為...