跳到主要內容

TensorFlow for Deep Learning

Book Description


Learn how to solve challenging machine learning problems with Tensorflow, Google’s revolutionary new system for deep learning. If you have some background with basic linear algebra and calculus, this practical book shows you how to build—and when to use—deep learning architectures. You’ll learn how to design systems capable of detecting objects in images, understanding human speech, analyzing video, and predicting the properties of potential medicines.
TensorFlow for Deep Learning teaches concepts through practical examples and builds understanding of deep learning foundations from the ground up. It’s ideal for practicing developers comfortable with designing software systems, but not necessarily with creating learning systems. This book is also useful for scientists and other professionals who are comfortable with scripting, but not necessarily with designing learning algorithms.
  • Gain in-depth knowledge of the TensorFlow API and primitives.
  • Understand how to train and tune machine learning systems with TensorFlow on large datasets.
  • Learn how to use TensorFlow with convolutional networks, recurrent networks, LSTMs, and reinforcement learning.

Table of Contents

  1. Preface
    1. Conventions Used in This Book
    2. Using Code Examples
    3. O’Reilly Safari
    4. How to Contact Us
    5. Acknowledgments
  2. 1. Introduction to Deep Learning
    1. Machine Learning Eats Computer Science
    2. Deep Learning Primitives
      1. Fully Connected Layer
      2. Convolutional Layer
      3. Recurrent Neural Network Layers
      4. Long Short-Term Memory Cells
    3. Deep Learning Architectures
      1. LeNet
      2. AlexNet
      3. ResNet
      4. Neural Captioning Model
      5. Google Neural Machine Translation
      6. One-Shot Models
      7. AlphaGo
      8. Generative Adversarial Networks
      9. Neural Turing Machines
    4. Deep Learning Frameworks
      1. Limitations of TensorFlow
    5. Review
  3. 2. Introduction to TensorFlow Primitives
    1. Introducing Tensors
      1. Scalars, Vectors, and Matrices
      2. Matrix Mathematics
      3. Tensors
      4. Tensors in Physics
      5. Mathematical Asides
    2. Basic Computations in TensorFlow
      1. Installing TensorFlow and Getting Started
      2. Initializing Constant Tensors
      3. Sampling Random Tensors
      4. Tensor Addition and Scaling
      5. Matrix Operations
      6. Tensor Types
      7. Tensor Shape Manipulations
      8. Introduction to Broadcasting
    3. Imperative and Declarative Programming
      1. TensorFlow Graphs
      2. TensorFlow Sessions
      3. TensorFlow Variables
    4. Review
  4. 3. Linear and Logistic Regression with TensorFlow
    1. Mathematical Review
      1. Functions and Differentiability
      2. Loss Functions
      3. Gradient Descent
      4. Automatic Differentiation Systems
    2. Learning with TensorFlow
      1. Creating Toy Datasets
      2. New TensorFlow Concepts
    3. Training Linear and Logistic Models in TensorFlow
      1. Linear Regression in TensorFlow
      2. Logistic Regression in TensorFlow
    4. Review
  5. 4. Fully Connected Deep Networks
    1. What Is a Fully Connected Deep Network?
    2. “Neurons” in Fully Connected Networks
      1. Learning Fully Connected Networks with Backpropagation
      2. Universal Convergence Theorem
      3. Why Deep Networks?
    3. Training Fully Connected Neural Networks
      1. Learnable Representations
      2. Activations
      3. Fully Connected Networks Memorize
      4. Regularization
      5. Training Fully Connected Networks
    4. Implementation in TensorFlow
      1. Installing DeepChem
      2. Tox21 Dataset
      3. Accepting Minibatches of Placeholders
      4. Implementing a Hidden Layer
      5. Adding Dropout to a Hidden Layer
      6. Implementing Minibatching
      7. Evaluating Model Accuracy
      8. Using TensorBoard to Track Model Convergence
    5. Review
  6. 5. Hyperparameter Optimization
    1. Model Evaluation and Hyperparameter Optimization
    2. Metrics, Metrics, Metrics
      1. Binary Classification Metrics
      2. Multiclass Classification Metrics
      3. Regression Metrics
    3. Hyperparameter Optimization Algorithms
      1. Setting Up a Baseline
      2. Graduate Student Descent
      3. Grid Search
      4. Random Hyperparameter Search
      5. Challenge for the Reader
    4. Review
  7. 6. Convolutional Neural Networks
    1. Introduction to Convolutional Architectures
      1. Local Receptive Fields
      2. Convolutional Kernels
      3. Pooling Layers
      4. Constructing Convolutional Networks
      5. Dilated Convolutions
    2. Applications of Convolutional Networks
      1. Object Detection and Localization
      2. Image Segmentation
      3. Graph Convolutions
      4. Generating Images with Variational Autoencoders
    3. Training a Convolutional Network in TensorFlow
      1. The MNIST Dataset
      2. Loading MNIST
      3. TensorFlow Convolutional Primitives
      4. The Convolutional Architecture
      5. Evaluating Trained Models
      6. Challenge for the Reader
    4. Review
  8. 7. Recurrent Neural Networks
    1. Overview of Recurrent Architectures
    2. Recurrent Cells
      1. Long Short-Term Memory (LSTM)
      2. Gated Recurrent Units (GRU)
    3. Applications of Recurrent Models
      1. Sampling from Recurrent Networks
      2. Seq2seq Models
    4. Neural Turing Machines
    5. Working with Recurrent Neural Networks in Practice
    6. Processing the Penn Treebank Corpus
      1. Code for Preprocessing
      2. Loading Data into TensorFlow
      3. The Basic Recurrent Architecture
      4. Challenge for the Reader
    7. Review
  9. 8. Reinforcement Learning
    1. Markov Decision Processes
    2. Reinforcement Learning Algorithms
      1. Q-Learning
      2. Policy Learning
      3. Asynchronous Training
    3. Limits of Reinforcement Learning
    4. Playing Tic-Tac-Toe
      1. Object Orientation
      2. Abstract Environment
      3. Tic-Tac-Toe Environment
      4. The Layer Abstraction
      5. Defining a Graph of Layers
    5. The A3C Algorithm
      1. The A3C Loss Function
      2. Defining Workers
      3. Training the Policy
      4. Challenge for the Reader
    6. Review
  10. 9. Training Large Deep Networks
    1. Custom Hardware for Deep Networks
    2. CPU Training
      1. GPU Training
      2. Tensor Processing Units
      3. Field Programmable Gate Arrays
      4. Neuromorphic Chips
    3. Distributed Deep Network Training
      1. Data Parallelism
      2. Model Parallelism
    4. Data Parallel Training with Multiple GPUs on Cifar10
      1. Downloading and Loading the DATA
      2. Deep Dive on the Architecture
      3. Training on Multiple GPUs
      4. Challenge for the Reader
    5. Review
  11. 10. The Future of Deep Learning
    1. Deep Learning Outside the Tech Industry
      1. Deep Learning in the Pharmaceutical Industry
      2. Deep Learning in Law
      3. Deep Learning for Robotics
      4. Deep Learning in Agriculture
    2. Using Deep Learning Ethically
    3. Is Artificial General Intelligence Imminent?
    4. Where to Go from Here?
  12. Index

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....
2019全台精選3+個燈會,週邊順遊景點懶人包 2019燈會要去哪裡看?全台精選3+個燈會介紹、週邊順遊景點整理給你。 東港小鎮燈區-鮪鮪到來。 2019-02-15 微笑台灣編輯室 全台灣 各縣市政府 1435 延伸閱讀 ►  元宵節不只看燈會!全台元宵祭典精選、順遊景點整理 [屏東]2019台灣燈會在屏東 2/9-3/3:屏東市 · 東港鎮 · 大鵬灣國家風景區 台灣燈會自1990年起開始辦理,至2019年邁入第30週年,也是首次在屏東舉辦,屏東縣政府與交通部觀光局導入創新、科技元素,融入在地特色文化設計,在東港大鵬灣國家風景區打造廣闊的海洋灣域燈區,東港鎮結合漁港及宗教文化的小鎮燈區,及屏東市綿延近5公里長的綵燈節河岸燈區,讓屏東成為璀璨的光之南國,迎向國際。 詳細介紹 ►  2019台灣燈會在屏東 第一次移師國境之南 大鵬灣燈區 主題樂園式燈會也是主燈所在區,區內分為農業海洋燈區、客家燈區、原住民燈區、綠能環保燈區、藝術燈區、宗教燈區、競賽花燈及317個社區關懷據點手作的萬歲光廊等。 客家燈籠隧道。 平日:周一~周四14:00-22:30(熄燈) 假日:周五~周六10:00-22:30(熄燈)  屏東燈區: 萬年溪畔 屏東綵燈節藍區-生態。 綵燈節--每日17:30 - 22:00(熄燈) 勝利星村--平日:14:00 - 22:30(熄燈) 假日:10:00 - 22:30(熄燈) 燈區以「彩虹」為主題,沿著蜿蜒市區的萬年溪打造近5公里長的光之流域,50組水上、音樂及互動科技等不同類型燈飾,呈現紅色熱情、橙色活力、黃色甜美、綠色雄偉、藍色壯闊、靛色神祕、紫色華麗等屏東風情。勝利星村另有懷舊風的燈飾,及屏東公園聖誕節燈飾。 東港小鎮燈區 東港小鎮燈區-鮪鮪到來。 小鎮燈區以海的屏東為主題,用漁港風情及宗教文化內涵規劃4個主題區,分別為張燈結綵趣、東津好風情、神遊幸福海、延平老街區。每日17:00~22:30(熄燈) 以上台灣燈會資料來源: 2019台灣燈會官網 、 i屏東~愛屏東 。 >> 順遊行程 小吃旅行-東港小鎮 東港小吃和東港人一樣,熱情澎湃...