跳到主要內容

Raspberry pi Using GPIO (這個裡面有一個地方要注意, pi安裝npm 指令有安全性設定的問題)

npm install --unsafe-perm --verbose -g sails
這一行指令對 raspberry pi 安裝nodejs 很重要

Node.js Raspberry Pi - GPIO Introduction


What is GPIO?

GPIO stands for General Purpose Input Output.
The Raspberry Pi has two rows of GPIO pins, which are connections between the Raspberry Pi, and the real world.
Output pins are like switches that the Raspberry Pi can turn on or off (like turning on/off a LED light). But it can also send a signal to another device.
Input pins are like switches that you can turn on or off from the outside world (like a on/off light switch). But it can also be a data from a sensor, or a signal from another device.
That means that you can interact with the real world, and control devices and electronics using the Raspberry PI and its GPIO pins!

Taking a Closer Look at the GPIO Pins

Raspberry Pi 3 with GPIO
This is an illustration of the Raspberry Pi 3.
The GPIO pins are the small red squares in two rows on the right side of the Raspberry Pi, on the actual Raspberry Pi they are small metal pins.
The Raspberry Pi 3 has 26 GPIO pins, the rest of the pins are power, ground or "other".
The pin placements correspond with the table below.

Raspberry Pi B+, 2, 3 & Zero

3V3125V
GPIO 2345V
GPIO 356GND
GPIO 478GPIO 14
GND910GPIO 15
GPIO 171112GPIO 18
GPIO 271314GND
GPIO 221516GPIO 23
3V31718GPIO 24
GPIO 101920GND
GPIO 92122GPIO 25
GPIO 112324GPIO 8
GND2526GPIO 7
DNC2728DNC
GPIO 52930GND
GPIO 63132GPIO 12
GPIO 133334GND
GPIO 193536GPIO 16
GPIO 263738GPIO 20
GND3940GPIO 21

Legend

Physical Pin Number
Power +
Ground
UART
I2C
SPI
GPIO
Do Not Connect


Taking a Closer Look at the Breadboard

A breadboard is used for prototyping electronics, it allows you to create circuits without soldering. It is basically a plastic board, with a grid of tie-points (holes). Inside the board there are metal strips connecting the different tie-points in specific ways.
In the illustration below we have highlighted some of the sections with different colors. This is to show you how the grid is connected.
Breadboard with connections highlighted
The different sections of the breadboard:
  • On the left, and right, side there are 2 columns of tie-points. All the tie points in each of these columns are connected.
  • The Power Bus - The columns highlighted with red. There are usually used to connect power to the Breadboard. Since the entire column is connected, you can connect power to any of the tie-points in the column.
  • The Ground Bus - The columns highlighted with blue. There are usually used to connect Ground to the Breadboard. Since the entire column is connected, you can connect ground to any of the tie-points in the column.
  • Rows of connected Tie-Points - The rows highlighted with green. The tie-points of each of these rows are connected, but not the entire row! The left side tie-points are connected (A-B-C-D-E), and the right side tie-points are connected (F-G-H-I-J).
  • In the center of the Breadboard there is a Trench, this separates the left and right rows. The width of the trench is designed so that many Integrated Circuits fit across it.

Install the onoff Module

To interface with the GPIO on the Raspberry Pi using Node.js, we will use a Module called "onoff".
Install the onoff module using npm:
pi@w3demopi:~ $ npm install onoff
Now onoff should be installed and we can interact with the GPIO of the Raspberry Pi.

Using the GPIO for Output

In this chapter we will use a Raspberry Pi and its GPIO to make a LED blink.
We use Node.js with the onoff module to control the GPIO.
To get a LED light to turn on, we use a GPIO pin as "Output", and create a script to turn it on and off (blinking).

What do we need?

In this chapter we will create a simple example where we control a LED light.
For this you need:
Click the links in the list above for descriptions of the different components.
Note: The resistor you need can be different from what we use depending on the type of LED you use. Most small LEDs only need a small resistor, around 200-500 ohms. It is generally not critical what exact value you use, but the smaller the value of the resistor, the brighter the LED will shine.

Building the Circuit

Now it is time to build the circuit on our Breadboard.
If you are new to electronics, we recommend you turn off the power for the Raspberry Pi. And use an anti-static mat or a grounding strap to avoid damaging it.
Shut down the Raspberry Pi properly with the command:
pi@w3demopi:~ $ sudo shutdown -h now
After the LEDs stop blinking on the Raspberry Pi, then pull out the power plug from the Raspberry Pi (or turn of the power strip it is connected to).
Just pulling the plug without shutting down properly may cause corruption of the memory card.
Raspberry Pi 3 with Breadboard. Simple LED circuit
Look at the above illustration of the circuit.
  1. On the Raspberry Pi, connect the female leg of the first jumper wire to Ground. You can use any GNDpin. In this example we used Physical Pin 9 (GND, row 5, left column)
  2. On the Breadboard, connect the male leg of the first jumper wire to the Ground Bus column on the right. That entire column of your breadboard is connected, so it doesn't matter which row. In this example we have attached it to row 1
  3. On the Raspberry Pi, connect the female leg of the second jumper cable to a GPIO pin. In this example we used Physical Pin 7 (GPIO 4, row 4, left column)
  4. On the Breadboard, connect the male leg of the second jumper wire to the Tie-Point row of your choice. In this example we connected it to row 5, column A
  5. On the Breadboard, connect one leg of the resistor to the Ground Bus column on the right side. That entire column of your breadboard is connected, so it doesn't matter which row. In this example we have attached it to row 5
  6. On the Breadboard, connect the other leg of the resistor to the right side Tie-Point row of your choice. In this example we have used row 5, column J
  7. On the Breadboard, connect the cathode leg (the shortest leg) of the LED to the same Tie-Point row that you connected the resistor from GND to. In this example we used row 5, column F
  8. On the Breadboard, connect the anode leg (the longest leg) of the LED to the same Tie-Point row that you connected the jumper from the GPIO pin to. In this example we used row 5, column E
Your circuit should now be complete, and your connections should look pretty similar to the illustration above.
Now it is time to boot up the Raspberry Pi, and write the Node.js script to interact with it.


Raspberry Pi and Node.js Blinking LED Script

Now that we have everything set up, we can write a script to turn the LED on and off.
Start by making a directory where we can keep our Node.js scripts:
pi@w3demopi:~ $ mkdir nodetest
Go to our new directory:
pi@w3demopi:~ $ cd nodetest
Now we will create a new file called "blink.js" using the Nano Editor:
pi@w3demopi:~ $ nano blink.js
The file is now open and can be edited with the built in Nano Editor.
Write, or paste the following code:

blink.js

var Gpio = require('onoff').Gpio//include onoff to interact with the GPIOvar LED = new Gpio(4'out'); //use GPIO pin 4, and specify that it is outputvar blinkInterval = setInterval(blinkLED, 250); //run the blinkLED function every 250ms
function blinkLED() { //function to start blinking  if (LED.readSync() === 0) { //check the pin state, if the state is 0 (or off)    LED.writeSync(1); //set pin state to 1 (turn LED on)  } else {
    LED.writeSync(0); //set pin state to 0 (turn LED off)  }
}

function endBlink() //function to stop blinking  clearInterval(blinkInterval); // Stop blink intervals  LED.writeSync(0); // Turn LED off  LED.unexport(); // Unexport GPIO to free resources}

setTimeout(endBlink, 5000); //stop blinking after 5 seconds
Press "Ctrl+x" to save the code. Confirm with "y", and confirm the name with "Enter".
Run the code:
pi@w3demopi:~ $ node blink.js
Now the LED should blink for 5 seconds (10 times) before turning off again!

留言

這個網誌中的熱門文章

opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
自製直播音源線 Bird Liang   October 6, 2016   in  View Bird Liang, Chief Engineer (梁子凌 / 技術長兼工程輔導長) 負責 AppWorks 技術策略與佈署,同時主導工程輔導。人生的第一份正職工作是創業,之後在外商圈電子業中闖蕩多年,經歷過 NXP、Sony、Newport Imagining、Crossmatch 等企業,從事無線通訊、影像系統、手機、面板、半導體、生物辨識等不同領域產品開發。熱愛學習新事物,協助團隊解決技術問題。放棄了幾近退休般的生活加入 AppWorks,為的是幫助更多在創業路上的人,並重新體驗創業的熱情。台大農機系、台科大電子所畢業,熱愛賞鳥、演奏管風琴,亦是不折不扣的熱血 Maker。 隨著 Facebook 開放一般帳號直播,現在我們只要拿起手機,隨時隨地都可以開始直播。回想幾年前 AppWorks 剛開始進行 Demo Day 直播時,還要將 HDMI 訊號接進 PC 中、再編碼打進 YouTube 的複雜度,實不可同日而語。 但用手機或平板直播最大的問題往往不是影像而是聲音。iPhone 或 iPad 上的攝影機,感度和解析度早已不輸數年前的專業攝影機,只要現場光不太差,大概都可以拍出令人滿意的畫面。但直播的聲音一直是個大問題,手機上的麥克風跟人耳所聽到的聲音其實有很大的差距,在比較大的場子裡,光是仰賴內建麥克風的收音多半無法有令人滿意的效果。 在大型的活動中,現場通常會有 PA 系統,最理想的方式還是想辦法將 PA 的訊號餵進 iPad 或 iPhone 中,保證聲音乾淨又清楚,絕對不會有其它有的沒的現場音。 iPhone 的耳機孔雖然可以插帶有麥克風的耳機 (如 Apple 原廠的 EarPods),但它的訊號位準是電容式麥克風的位準。PA 控台的輸出幾乎都是 line level 的,兩者的訊號電壓相差百倍以上,我們得做個小東西來解決這個差距。 Line 與 Mic 在 mixer 上,我們常會看到輸入可以在兩種規格中切換: line level 和 mic level。Mic level 顧名思義就是從麥克風來的訊號,這個訊號的規格是從不需供電的傳統動圈麥克風來的。因為不需...