跳到主要內容

UJIIndoorLoc Data Set

UJIIndoorLoc Data Set
DownloadData FolderData Set Description
Abstract: The UJIIndoorLoc is a Multi-Building Multi-Floor indoor localization database to test Indoor Positioning System that rely on WLAN/WiFi fingerprint.
Data Set Characteristics:  
Multivariate
Number of Instances:
21048
Area:
Computer
Attribute Characteristics:
Integer, Real
Number of Attributes:
529
Date Donated
2014-09-18
Associated Tasks:
Classification, Regression
Missing Values?
N/A
Number of Web Hits:
47202

Source:
Donors/Contact
Joaquín Torres-Sospedra jtorres +@+ uji.es
Raul Montoliu montoliu +@+ uji.es
Adolfo Martínez-Usó admarus +@+ upv.es
Joaquín Huerta huerta +@+ uji.es
UJI - Institute of New Imaging Technologies, Universitat Jaume I, Avda. Vicente Sos Baynat S/N, 12071, Castellón, Spain.
UPV - Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Valencia, Spain.

Creators
Joaquín Torres-Sospedra, Raul Montoliu, Adolfo Martínez-Usó, Tomar J. Arnau, Joan P. Avariento, Mauri Benedito-Bordonau, Joaquín Huerta, Yasmina Andreu, óscar Belmonte, Vicent Castelló, Irene Garcia-Martí, Diego Gargallo, Carlos Gonzalez, Nadal Francisco, Josep López, Ruben Martínez, Roberto Mediero, Javier Ortells, Nacho Piqueras, Ianisse Quizán, David Rambla, Luis E. Rodríguez, Eva Salvador Balaguer, Ana Sanchís, Carlos Serra, and Sergi Trilles.

Data Set Information:
Many real world applications need to know the localization of a user in the world to provide their services. Therefore, automatic user localization has been a hot research topic in the last years. Automatic user localization consists of estimating the position of the user (latitude, longitude and altitude) by using an electronic device, usually a mobile phone. Outdoor localization problem can be solved very accurately thanks to the inclusion of GPS sensors into the mobile devices. However, indoor localization is still an open problem mainly due to the loss of GPS signal in indoor environments. Although, there are some indoor positioning technologies and methodologies, this database is focused on WLAN fingerprint-based ones (also know as WiFi Fingerprinting).

Although there are many papers in the literature trying to solve the indoor localization problem using a WLAN fingerprint-based method, there still exists one important drawback in this field which is the lack of a common database for comparison purposes. So, UJIIndoorLoc database is presented to overcome this gap. We expect that the proposed database will become the reference database to compare different indoor localization methodologies based on WiFi fingerprinting.

The UJIIndoorLoc database covers three buildings of Universitat Jaume I with 4 or more floors and almost 110.000m2. It can be used for classification, e.g. actual building and floor identification, or regression, e.g. actual longitude and latitude estimation. It was created in 2013 by means of more than 20 different users and 25 Android devices. The database consists of 19937 training/reference records (trainingData.csv file) and 1111 validation/test records (validationData.csv file).

The 529 attributes contain the WiFi fingerprint, the coordinates where it was taken, and other useful information.

Each WiFi fingerprint can be characterized by the detected Wireless Access Points (WAPs) and the corresponding Received Signal Strength Intensity (RSSI). The intensity values are represented as negative integer values ranging -104dBm (extremely poor signal) to 0dbM. The positive value 100 is used to denote when a WAP was not detected. During the database creation, 520 different WAPs were detected. Thus, the WiFi fingerprint is composed by 520 intensity values.

Then the coordinates (latitude, longitude, floor) and Building ID are provided as the attributes to be predicted.

Additional information has been provided.

The particular space (offices, labs, etc.) and the relative position (inside/outside the space) where the capture was taken have been recorded. Outside means that the capture was taken in front of the door of the space.

Information about who (user), how (android device & version) and when (timestamp) WiFi capture was taken is also recorded.



Attribute Information:
Attribute 001 (WAP001): Intensity value for WAP001. Negative integer values from -104 to 0 and +100. Positive value 100 used if WAP001 was not detected.
....
Attribute 520 (WAP520): Intensity value for WAP520. Negative integer values from -104 to 0 and +100. Positive Vvalue 100 used if WAP520 was not detected.
Attribute 521 (Longitude): Longitude. Negative real values from -7695.9387549299299000 to -7299.786516730871000
Attribute 522 (Latitude): Latitude. Positive real values from 4864745.7450159714 to 4865017.3646842018.
Attribute 523 (Floor): Altitude in floors inside the building. Integer values from 0 to 4.
Attribute 524 (BuildingID): ID to identify the building. Measures were taken in three different buildings. Categorical integer values from 0 to 2.
Attribute 525 (SpaceID): Internal ID number to identify the Space (office, corridor, classroom) where the capture was taken. Categorical integer values.
Attribute 526 (RelativePosition): Relative position with respect to the Space (1 - Inside, 2 - Outside in Front of the door). Categorical integer values.
Attribute 527 (UserID): User identifier (see below). Categorical integer values.
Attribute 528 (PhoneID): Android device identifier (see below). Categorical integer values.
Attribute 529 (Timestamp): UNIX Time when the capture was taken. Integer value.


---------------------------------------------
UserID Anonymized user Height (cm)
---------------------------------------------
0 USER0000 (Validation User) N/A
1 USER0001 170
2 USER0002 176
3 USER0003 172
4 USER0004 174
5 USER0005 184
6 USER0006 180
7 USER0007 160
8 USER0008 176
9 USER0009 177
10 USER0010 186
11 USER0011 176
12 USER0012 158
13 USER0013 174
14 USER0014 173
15 USER0015 174
16 USER0016 171
17 USER0017 166
18 USER0018 162
----------------------------------------------

----------------------------------------------
PhoneID Android Device Android Ver. UserID
----------------------------------------------
0 Celkon A27 4.0.4(6577) 0
1 GT-I8160 2.3.6 8
2 GT-I8160 4.1.2 0
3 GT-I9100 4.0.4 5
4 GT-I9300 4.1.2 0
5 GT-I9505 4.2.2 0
6 GT-S5360 2.3.6 7
7 GT-S6500 2.3.6 14
8 Galaxy Nexus 4.2.2 10
9 Galaxy Nexus 4.3 0
10 HTC Desire HD 2.3.5 18
11 HTC One 4.1.2 15
12 HTC One 4.2.2 0
13 HTC Wildfire S 2.3.5 0,11
14 LT22i 4.0.4 0,1,9,16
15 LT22i 4.1.2 0
16 LT26i 4.0.4 3
17 M1005D 4.0.4 13
18 MT11i 2.3.4 4
19 Nexus 4 4.2.2 6
20 Nexus 4 4.3 0
21 Nexus S 4.1.2 0
22 Orange Monte Carlo 2.3.5 17
23 Transformer TF101 4.0.3 2
24 bq Curie 4.1.1 12
----------------------------------------------

Relevant Papers:
Joaquín Torres-Sospedra, Raúl Montoliu, Adolfo Martínez-Usó, Tomar J. Arnau, Joan P. Avariento, Mauri Benedito-Bordonau, Joaquín Huerta
UJIIndoorLoc: A New Multi-building and Multi-floor Database for WLAN Fingerprint-based Indoor Localization Problems
In Proceedings of the Fifth International Conference on Indoor Positioning and Indoor Navigation, 2014.
Available at: [Web Link]

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計 — 說服客戶與老闆、跟工程師溝通、強化設計概念的有感心理學 — 情況 1 : 為何要留那麼多空白? 害我還要滾動滑鼠(掀桌) 情況 2 : 為什麼不能直接用一頁展現? 把客戶的需求塞滿不就完工啦! (無言) 情況 3: 這種設計好像不錯,但是為什麼要這樣做? (直覺大神告訴我這樣設計,但我說不出來為什麼..) 雖然世界上有許多 GUI 已經走得又長又遠又厲害,但別以為這種古代人對話不會出現,一直以來我們只是習慣這些 GUI 被如此呈現,但為何要這樣設計我們卻不一定知道。 由於 完形心理學 歸納出人類大腦認知之普遍性的規則,因此無論是不是 UI/UX 設計師都很適合閱讀本篇文章。但還是想特別強調,若任職於傳統科技公司,需要對上說服老闆,需要平行說服(資深)工程師,那請把它收進最愛;而習慣套用設計好的 UI 套件,但不知道為何這樣設計的 IT 工程師,也可以透過本文來強化自己的產品說服力。 那就開始吧~(擊掌) 完形心理學,又稱作格式塔(Gestalt)心理學,於二十世紀初由德國心理學家提出 — 用以說明人類大腦如何解釋肉眼所觀察到的事物,並轉化為我們所認知的物件。它可說是現代認知心理學的基礎,其貫徹的概念就是「整體大於個體的總合 “The whole is other than the sum of the parts.” —  Kurt Koffka」。 若深究完整的理論將會使本文變得非常的艱澀,因此筆者直接抽取個人認為與 UI 設計較為相關的 7 個原則(如下),並搭配實際案例做說明。有興趣了解全部理論的話可以另外 Google。 1. 相似性 (Similarity)  — 我們的大腦會把相似的事物看成一體 如果數個元素具有類似的尺寸、體積、顏色,使用者會自動為它們建立起關聯。這是因為我們的眼睛和大腦較容易將相似的事物組織在一起。如下圖所示,當一連串方塊和一連串的圓形並排時,我們會看成(a)一列方塊和兩列圓形(b)一排圓形和兩排三角形。 對應用到介面設計上,FB 每則文章下方的按鈕圖標(按讚 Like / 留言Comment / 分享 Share)雖然功能各不相同,但由於它們在視覺上顏色、大小、排列上的相似性,用戶會將它們視認為...