跳到主要內容

UJIIndoorLoc Data Set

UJIIndoorLoc Data Set
DownloadData FolderData Set Description
Abstract: The UJIIndoorLoc is a Multi-Building Multi-Floor indoor localization database to test Indoor Positioning System that rely on WLAN/WiFi fingerprint.
Data Set Characteristics:  
Multivariate
Number of Instances:
21048
Area:
Computer
Attribute Characteristics:
Integer, Real
Number of Attributes:
529
Date Donated
2014-09-18
Associated Tasks:
Classification, Regression
Missing Values?
N/A
Number of Web Hits:
47202

Source:
Donors/Contact
Joaquín Torres-Sospedra jtorres +@+ uji.es
Raul Montoliu montoliu +@+ uji.es
Adolfo Martínez-Usó admarus +@+ upv.es
Joaquín Huerta huerta +@+ uji.es
UJI - Institute of New Imaging Technologies, Universitat Jaume I, Avda. Vicente Sos Baynat S/N, 12071, Castellón, Spain.
UPV - Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Valencia, Spain.

Creators
Joaquín Torres-Sospedra, Raul Montoliu, Adolfo Martínez-Usó, Tomar J. Arnau, Joan P. Avariento, Mauri Benedito-Bordonau, Joaquín Huerta, Yasmina Andreu, óscar Belmonte, Vicent Castelló, Irene Garcia-Martí, Diego Gargallo, Carlos Gonzalez, Nadal Francisco, Josep López, Ruben Martínez, Roberto Mediero, Javier Ortells, Nacho Piqueras, Ianisse Quizán, David Rambla, Luis E. Rodríguez, Eva Salvador Balaguer, Ana Sanchís, Carlos Serra, and Sergi Trilles.

Data Set Information:
Many real world applications need to know the localization of a user in the world to provide their services. Therefore, automatic user localization has been a hot research topic in the last years. Automatic user localization consists of estimating the position of the user (latitude, longitude and altitude) by using an electronic device, usually a mobile phone. Outdoor localization problem can be solved very accurately thanks to the inclusion of GPS sensors into the mobile devices. However, indoor localization is still an open problem mainly due to the loss of GPS signal in indoor environments. Although, there are some indoor positioning technologies and methodologies, this database is focused on WLAN fingerprint-based ones (also know as WiFi Fingerprinting).

Although there are many papers in the literature trying to solve the indoor localization problem using a WLAN fingerprint-based method, there still exists one important drawback in this field which is the lack of a common database for comparison purposes. So, UJIIndoorLoc database is presented to overcome this gap. We expect that the proposed database will become the reference database to compare different indoor localization methodologies based on WiFi fingerprinting.

The UJIIndoorLoc database covers three buildings of Universitat Jaume I with 4 or more floors and almost 110.000m2. It can be used for classification, e.g. actual building and floor identification, or regression, e.g. actual longitude and latitude estimation. It was created in 2013 by means of more than 20 different users and 25 Android devices. The database consists of 19937 training/reference records (trainingData.csv file) and 1111 validation/test records (validationData.csv file).

The 529 attributes contain the WiFi fingerprint, the coordinates where it was taken, and other useful information.

Each WiFi fingerprint can be characterized by the detected Wireless Access Points (WAPs) and the corresponding Received Signal Strength Intensity (RSSI). The intensity values are represented as negative integer values ranging -104dBm (extremely poor signal) to 0dbM. The positive value 100 is used to denote when a WAP was not detected. During the database creation, 520 different WAPs were detected. Thus, the WiFi fingerprint is composed by 520 intensity values.

Then the coordinates (latitude, longitude, floor) and Building ID are provided as the attributes to be predicted.

Additional information has been provided.

The particular space (offices, labs, etc.) and the relative position (inside/outside the space) where the capture was taken have been recorded. Outside means that the capture was taken in front of the door of the space.

Information about who (user), how (android device & version) and when (timestamp) WiFi capture was taken is also recorded.



Attribute Information:
Attribute 001 (WAP001): Intensity value for WAP001. Negative integer values from -104 to 0 and +100. Positive value 100 used if WAP001 was not detected.
....
Attribute 520 (WAP520): Intensity value for WAP520. Negative integer values from -104 to 0 and +100. Positive Vvalue 100 used if WAP520 was not detected.
Attribute 521 (Longitude): Longitude. Negative real values from -7695.9387549299299000 to -7299.786516730871000
Attribute 522 (Latitude): Latitude. Positive real values from 4864745.7450159714 to 4865017.3646842018.
Attribute 523 (Floor): Altitude in floors inside the building. Integer values from 0 to 4.
Attribute 524 (BuildingID): ID to identify the building. Measures were taken in three different buildings. Categorical integer values from 0 to 2.
Attribute 525 (SpaceID): Internal ID number to identify the Space (office, corridor, classroom) where the capture was taken. Categorical integer values.
Attribute 526 (RelativePosition): Relative position with respect to the Space (1 - Inside, 2 - Outside in Front of the door). Categorical integer values.
Attribute 527 (UserID): User identifier (see below). Categorical integer values.
Attribute 528 (PhoneID): Android device identifier (see below). Categorical integer values.
Attribute 529 (Timestamp): UNIX Time when the capture was taken. Integer value.


---------------------------------------------
UserID Anonymized user Height (cm)
---------------------------------------------
0 USER0000 (Validation User) N/A
1 USER0001 170
2 USER0002 176
3 USER0003 172
4 USER0004 174
5 USER0005 184
6 USER0006 180
7 USER0007 160
8 USER0008 176
9 USER0009 177
10 USER0010 186
11 USER0011 176
12 USER0012 158
13 USER0013 174
14 USER0014 173
15 USER0015 174
16 USER0016 171
17 USER0017 166
18 USER0018 162
----------------------------------------------

----------------------------------------------
PhoneID Android Device Android Ver. UserID
----------------------------------------------
0 Celkon A27 4.0.4(6577) 0
1 GT-I8160 2.3.6 8
2 GT-I8160 4.1.2 0
3 GT-I9100 4.0.4 5
4 GT-I9300 4.1.2 0
5 GT-I9505 4.2.2 0
6 GT-S5360 2.3.6 7
7 GT-S6500 2.3.6 14
8 Galaxy Nexus 4.2.2 10
9 Galaxy Nexus 4.3 0
10 HTC Desire HD 2.3.5 18
11 HTC One 4.1.2 15
12 HTC One 4.2.2 0
13 HTC Wildfire S 2.3.5 0,11
14 LT22i 4.0.4 0,1,9,16
15 LT22i 4.1.2 0
16 LT26i 4.0.4 3
17 M1005D 4.0.4 13
18 MT11i 2.3.4 4
19 Nexus 4 4.2.2 6
20 Nexus 4 4.3 0
21 Nexus S 4.1.2 0
22 Orange Monte Carlo 2.3.5 17
23 Transformer TF101 4.0.3 2
24 bq Curie 4.1.1 12
----------------------------------------------

Relevant Papers:
Joaquín Torres-Sospedra, Raúl Montoliu, Adolfo Martínez-Usó, Tomar J. Arnau, Joan P. Avariento, Mauri Benedito-Bordonau, Joaquín Huerta
UJIIndoorLoc: A New Multi-building and Multi-floor Database for WLAN Fingerprint-based Indoor Localization Problems
In Proceedings of the Fifth International Conference on Indoor Positioning and Indoor Navigation, 2014.
Available at: [Web Link]

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....
2019全台精選3+個燈會,週邊順遊景點懶人包 2019燈會要去哪裡看?全台精選3+個燈會介紹、週邊順遊景點整理給你。 東港小鎮燈區-鮪鮪到來。 2019-02-15 微笑台灣編輯室 全台灣 各縣市政府 1435 延伸閱讀 ►  元宵節不只看燈會!全台元宵祭典精選、順遊景點整理 [屏東]2019台灣燈會在屏東 2/9-3/3:屏東市 · 東港鎮 · 大鵬灣國家風景區 台灣燈會自1990年起開始辦理,至2019年邁入第30週年,也是首次在屏東舉辦,屏東縣政府與交通部觀光局導入創新、科技元素,融入在地特色文化設計,在東港大鵬灣國家風景區打造廣闊的海洋灣域燈區,東港鎮結合漁港及宗教文化的小鎮燈區,及屏東市綿延近5公里長的綵燈節河岸燈區,讓屏東成為璀璨的光之南國,迎向國際。 詳細介紹 ►  2019台灣燈會在屏東 第一次移師國境之南 大鵬灣燈區 主題樂園式燈會也是主燈所在區,區內分為農業海洋燈區、客家燈區、原住民燈區、綠能環保燈區、藝術燈區、宗教燈區、競賽花燈及317個社區關懷據點手作的萬歲光廊等。 客家燈籠隧道。 平日:周一~周四14:00-22:30(熄燈) 假日:周五~周六10:00-22:30(熄燈)  屏東燈區: 萬年溪畔 屏東綵燈節藍區-生態。 綵燈節--每日17:30 - 22:00(熄燈) 勝利星村--平日:14:00 - 22:30(熄燈) 假日:10:00 - 22:30(熄燈) 燈區以「彩虹」為主題,沿著蜿蜒市區的萬年溪打造近5公里長的光之流域,50組水上、音樂及互動科技等不同類型燈飾,呈現紅色熱情、橙色活力、黃色甜美、綠色雄偉、藍色壯闊、靛色神祕、紫色華麗等屏東風情。勝利星村另有懷舊風的燈飾,及屏東公園聖誕節燈飾。 東港小鎮燈區 東港小鎮燈區-鮪鮪到來。 小鎮燈區以海的屏東為主題,用漁港風情及宗教文化內涵規劃4個主題區,分別為張燈結綵趣、東津好風情、神遊幸福海、延平老街區。每日17:00~22:30(熄燈) 以上台灣燈會資料來源: 2019台灣燈會官網 、 i屏東~愛屏東 。 >> 順遊行程 小吃旅行-東港小鎮 東港小吃和東港人一樣,熱情澎湃...