跳到主要內容

Python data visualizations

This notebook demos Python data visualizations on the Iris dataset

This Python 3 environment comes with many helpful analytics libraries installed. It is defined by the kaggle/python docker image
We'll use three libraries for this tutorial: pandasmatplotlib, and seaborn.
Press "Fork" at the top-right of this screen to run this notebook yourself and build each of the examples.
In [1]:
# First, we'll import pandas, a data processing and CSV file I/O library
import pandas as pd

# We'll also import seaborn, a Python graphing library
import warnings # current version of seaborn generates a bunch of warnings that we'll ignore
warnings.filterwarnings("ignore")
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white", color_codes=True)

# Next, we'll load the Iris flower dataset, which is in the "../input/" directory
iris = pd.read_csv("../input/Iris.csv") # the iris dataset is now a Pandas DataFrame

# Let's see what's in the iris data - Jupyter notebooks print the result of the last thing you do
iris.head()

# Press shift+enter to execute this cell
Out[1]:
IdSepalLengthCmSepalWidthCmPetalLengthCmPetalWidthCmSpecies
015.13.51.40.2Iris-setosa
124.93.01.40.2Iris-setosa
234.73.21.30.2Iris-setosa
344.63.11.50.2Iris-setosa
455.03.61.40.2Iris-setosa
In [2]:
# Let's see how many examples we have of each species
iris["Species"].value_counts()
Out[2]:
Iris-virginica     50
Iris-versicolor    50
Iris-setosa        50
Name: Species, dtype: int64
In [3]:
# The first way we can plot things is using the .plot extension from Pandas dataframes
# We'll use this to make a scatterplot of the Iris features.
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")
Out[3]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87d034b0f0>
In [4]:
# We can also use the seaborn library to make a similar plot
# A seaborn jointplot shows bivariate scatterplots and univariate histograms in the same figure
sns.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=iris, size=5)
Out[4]:
<seaborn.axisgrid.JointGrid at 0x7f87d02f0630>
In [5]:
# One piece of information missing in the plots above is what species each plant is
# We'll use seaborn's FacetGrid to color the scatterplot by species
sns.FacetGrid(iris, hue="Species", size=5) \
   .map(plt.scatter, "SepalLengthCm", "SepalWidthCm") \
   .add_legend()
Out[5]:
<seaborn.axisgrid.FacetGrid at 0x7f87c6a86eb8>
In [6]:
# We can look at an individual feature in Seaborn through a boxplot
sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
Out[6]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87c68072e8>
In [7]:
# One way we can extend this plot is adding a layer of individual points on top of
# it through Seaborn's striplot
# 
# We'll use jitter=True so that all the points don't fall in single vertical lines
# above the species
#
# Saving the resulting axes as ax each time causes the resulting plot to be shown
# on top of the previous axes
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
ax = sns.stripplot(x="Species", y="PetalLengthCm", data=iris, jitter=True, edgecolor="gray")
In [8]:
# A violin plot combines the benefits of the previous two plots and simplifies them
# Denser regions of the data are fatter, and sparser thiner in a violin plot
sns.violinplot(x="Species", y="PetalLengthCm", data=iris, size=6)
Out[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87c6626668>
In [9]:
# A final seaborn plot useful for looking at univariate relations is the kdeplot,
# which creates and visualizes a kernel density estimate of the underlying feature
sns.FacetGrid(iris, hue="Species", size=6) \
   .map(sns.kdeplot, "PetalLengthCm") \
   .add_legend()
Out[9]:
<seaborn.axisgrid.FacetGrid at 0x7f87c3482898>
In [10]:
# Another useful seaborn plot is the pairplot, which shows the bivariate relation
# between each pair of features
# 
# From the pairplot, we'll see that the Iris-setosa species is separataed from the other
# two across all feature combinations
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3)
Out[10]:
<seaborn.axisgrid.PairGrid at 0x7f87c3325588>
In [11]:
# The diagonal elements in a pairplot show the histogram by default
# We can update these elements to show other things, such as a kde
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3, diag_kind="kde")
Out[11]:
<seaborn.axisgrid.PairGrid at 0x7f87c24c0e10>
In [12]:
# Now that we've covered seaborn, let's go back to some of the ones we can make with Pandas
# We can quickly make a boxplot with Pandas on each feature split out by species
iris.drop("Id", axis=1).boxplot(by="Species", figsize=(12, 6))
Out[12]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f87c1fbd780>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f87bb3b9da0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7f87bb039048>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f87bafb4278>]], dtype=object)
In [13]:
# One cool more sophisticated technique pandas has available is called Andrews Curves
# Andrews Curves involve using attributes of samples as coefficients for Fourier series
# and then plotting these
from pandas.tools.plotting import andrews_curves
andrews_curves(iris.drop("Id", axis=1), "Species")
Out[13]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87baf6f198>
In [14]:
# Another multivariate visualization technique pandas has is parallel_coordinates
# Parallel coordinates plots each feature on a separate column & then draws lines
# connecting the features for each data sample
from pandas.tools.plotting import parallel_coordinates
parallel_coordinates(iris.drop("Id", axis=1), "Species")
Out[14]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87ba94ec88>
In [15]:
# A final multivariate visualization technique pandas has is radviz
# Which puts each feature as a point on a 2D plane, and then simulates
# having each sample attached to those points through a spring weighted
# by the relative value for that feature
from pandas.tools.plotting import radviz
radviz(iris.drop("Id", axis=1), "Species")
Out[15]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f87ba6b84a8>

Wrapping Up

I hope you enjoyed this quick introduction to some of the quick, simple data visualizations you can create with pandas, seaborn, and matplotlib in Python!
I encourage you to run through these examples yourself, tweaking them and seeing what happens. From there, you can try applying these methods to a new dataset and incorprating them into your own workflow!
See Kaggle Datasets for other datasets to try visualizing. The World Food Facts data is an especially rich one for visualization.

留言

這個網誌中的熱門文章

opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
自製直播音源線 Bird Liang   October 6, 2016   in  View Bird Liang, Chief Engineer (梁子凌 / 技術長兼工程輔導長) 負責 AppWorks 技術策略與佈署,同時主導工程輔導。人生的第一份正職工作是創業,之後在外商圈電子業中闖蕩多年,經歷過 NXP、Sony、Newport Imagining、Crossmatch 等企業,從事無線通訊、影像系統、手機、面板、半導體、生物辨識等不同領域產品開發。熱愛學習新事物,協助團隊解決技術問題。放棄了幾近退休般的生活加入 AppWorks,為的是幫助更多在創業路上的人,並重新體驗創業的熱情。台大農機系、台科大電子所畢業,熱愛賞鳥、演奏管風琴,亦是不折不扣的熱血 Maker。 隨著 Facebook 開放一般帳號直播,現在我們只要拿起手機,隨時隨地都可以開始直播。回想幾年前 AppWorks 剛開始進行 Demo Day 直播時,還要將 HDMI 訊號接進 PC 中、再編碼打進 YouTube 的複雜度,實不可同日而語。 但用手機或平板直播最大的問題往往不是影像而是聲音。iPhone 或 iPad 上的攝影機,感度和解析度早已不輸數年前的專業攝影機,只要現場光不太差,大概都可以拍出令人滿意的畫面。但直播的聲音一直是個大問題,手機上的麥克風跟人耳所聽到的聲音其實有很大的差距,在比較大的場子裡,光是仰賴內建麥克風的收音多半無法有令人滿意的效果。 在大型的活動中,現場通常會有 PA 系統,最理想的方式還是想辦法將 PA 的訊號餵進 iPad 或 iPhone 中,保證聲音乾淨又清楚,絕對不會有其它有的沒的現場音。 iPhone 的耳機孔雖然可以插帶有麥克風的耳機 (如 Apple 原廠的 EarPods),但它的訊號位準是電容式麥克風的位準。PA 控台的輸出幾乎都是 line level 的,兩者的訊號電壓相差百倍以上,我們得做個小東西來解決這個差距。 Line 與 Mic 在 mixer 上,我們常會看到輸入可以在兩種規格中切換: line level 和 mic level。Mic level 顧名思義就是從麥克風來的訊號,這個訊號的規格是從不需供電的傳統動圈麥克風來的。因為不需...