跳到主要內容

GPU-accelerated Neural Networks in JavaScript

According to the Octoverse 2017 report, JavaScript is the most popular language on Github. Measured by the number of pull requests, the level of JavaScript activity is comparable to that of Python, Java and Go combined.
JavaScript has conquered the Web and made inroads on the server, mobile phones, the desktop and other platforms.
Meanwhile, the use of GPU acceleration has expanded well beyond computer graphics and is now an integral part of machine learning.
Training neural networks with deep architectures is a computationally intensive process that has led to state-of-the-art results across many important domains of machine intelligence.
This article looks at the ongoing convergence of these trends and provides an overview of the projects that are bringing GPU-accelerated neural networks to the JavaScript world.
Community logo for JavaScript

An overview

All projects listed below are actively maintained, have thousands of stars on Github and are distributed through NPM or CDNs.
They all implement GPU acceleration in the browser through WebGL and fall back to the CPU if a suitable graphics card is not present.
Libraries that are designed to run existing models (especially those trained with Python frameworks) are not included in this overview.
In the end, four projects have made it onto the list.
While its feature set is geared towards neural networks, deeplearn.js can be described as a general-purpose machine learning framework. Propel is a library for scientific computing that offers automatic differentiation. Gpu.js provides a convenient way to run JavaScript functions on the GPU. Brain.js is a continuation of an older neural network library and uses gpu.js for hardware acceleration.
I intend to maintain this article and expand it into a Github repository. Please let me know when you come across relevant news.

Deeplearn.js

Deeplearn.js is the most popular project among the four and described as a “hardware-accelerated JavaScript library for machine intelligence”. It is supported by the Google Brain team and a community of more than 50 contributors. The two main authors are Daniel Smilkov and Nikhil Thorat.
Definition of a convolutional layer in deeplearn.js
Written in TypeScript and modeled after Tensorflow, deeplearn.js supports a growing subset of the features provided in Google Brain’s flagship open-source project. The API essentially has three parts.
The first part covers functions used to create, initialize and transform tensors, the array-like structures that hold the data.
The next part of the API provides the operations that are performed on tensors. This includes basic mathematical operations, reduction, normalization and convolution. Support for recurrent neural networks is rudimentary at this point, but does include stacks of Long Short Term Memory Network cells.
The third part revolves around model training. All of the popular optimizers, from stochastic gradient descent to Adam, are included. Cross entropy loss, on the other hand, is the only loss function that is mentioned in the reference.
The remainder of the API is used to set up the environment and manage resources.
Experimental GPU acceleration in node.js can be achieved through headless-gl (see issue #49).
The project website has a number of memorable demos. These include piano performances by a recurrent neural network, a visual interface to build models and a webcam application based on a SqueezeNet (an image classifier with a relatively small number of parameters).

Propel

Propel is described as “differentiable programming for JavaScript”. The work of the two main authors, Ryan Dahl and Bert Belder, is complemented by eleven contributors.
A feed-forward neural network with three layers trained with Propel on the MNIST data set
Automatic differentiation (AD) is at the core of this project and frees us from the need to manually specify derivatives. For a given function f(x) defined with the supported tensor operations, the gradient function can be obtained using grad. The multi-variable case is covered by multigrad.
Beyond AD, it does not seem entirely clear where the project is heading. While a “numpy-like infrastructure” is mentioned as a goal on the website, the API is under “heavy development” and includes functionality associated with neural networks and computer vision. Using the load function, the content of npy files can be parsed and used as tensors.
In a browser environment, Propel makes use of the WebGL capabilities in deeplearn.js. For GPU acceleration in Node, the project uses TensorFlow’s C API.

gpu.js

While most of my experience is with CUDA rather than WebGL, I can attest to the time-consuming nature of GPU programming. I was therefore pleasantly surprised when I came across gpu.js. With around 5,700 stars on Github, the project is comparable to deeplearn.js in terms of its popularity and has 18 contributors. Several individuals have made substantial contributions over time. Robert Plummer is the main author.
Matrix multiplication with gpu.js: The Hello World equivalent in GPU programming
A kernel, in the current context, is a function that is executed on the GPU rather than the CPU. With gpu.js, kernels can be written in a subset of JavaScript. The code is then compiled and run on the GPU. Node.JS supportthrough OpenCL has been added a few weeks ago.
Numbers and arrays of numbers with up to three dimensions are used as input and output. In addition to basic mathematical operations, gpu.js supports local variables, loops and if/else statements.
To enable code reuse and allow for a more modular design, custom functionscan be registered and then used from within the kernel code.
Within the JavaScript definition of a kernel, the this object provides the thread identifiers and holds values that are constant inside the actual kernel but dynamic on the outside.
The project specializes in accelerated JavaScript functions and does not attempt to provide a neural network framework. For that, we can turn to a library that depends on gpu.js.

Brain.js

Brain.js is the successor to harthur/brain, a repository with a history dating back to the ancient times of 2010.
In total, close to 30 individuals have contributed to these two repositories.
Support for GPU-accelerated neural nets is based on gpu.js and has, arguably, been the most important development in the project’s recent history.
In addition to feed-forward networks, Brain.js includes implementations of three important types of recurrent neural networks: classic Elman networks, Long-short Term Memory Networks and the more recent networks with Gated Recurrent Units.
The demos included in the repository are at an early stage. A neural network learning color contrast preferences is shown on the homepage. Two other demos, one involving the detection of characters drawn with ASCII symbols, can be found in the source code.

The advent of accelerated JavaScript libraries for machine learning has several interesting implications.
Online courses can integrate exercises related to machine learning or GPU computing directly into the web application. Students do not necessarily have to set up separate development environments across different operating systems and software versions.
Many demos based on neural networks can be deployed more easily and no longer require server-side APIs.
JavaScript developers interested in machine learning can make full use of their specialized skills and spend less time on integration issues.
Furthermore, computational resources available on the client side might be employed more efficiently. After all, not all graphics cards are utilized for virtual reality and cryptocurrency mining all the time.

To be clear, I do not advocate the use of the libraries mentioned in this article for mission-critical neural networks at this point. The Python ecosystem continues to be the obvious first choice for most applications.
It is, however, encouraging to see the progress that has been made over the last twelve months. Neither deeplearn.js nor Propel existed a year ago. Activity levels in the gpu.js repository were relatively low and Brain.js did not support GPU acceleration.
Over time, these projects will compete with the established frameworks in some regards and enable entirely new applications that JavaScript is uniquely suited for.

Thank you for reading! If you’ve enjoyed this article, hit the clap button and follow me to receive more information about the latest developments in machine learning.

For an introduction to the topic, check out my Machine Learning From Scratch series.

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
2019全台精選3+個燈會,週邊順遊景點懶人包 2019燈會要去哪裡看?全台精選3+個燈會介紹、週邊順遊景點整理給你。 東港小鎮燈區-鮪鮪到來。 2019-02-15 微笑台灣編輯室 全台灣 各縣市政府 1435 延伸閱讀 ►  元宵節不只看燈會!全台元宵祭典精選、順遊景點整理 [屏東]2019台灣燈會在屏東 2/9-3/3:屏東市 · 東港鎮 · 大鵬灣國家風景區 台灣燈會自1990年起開始辦理,至2019年邁入第30週年,也是首次在屏東舉辦,屏東縣政府與交通部觀光局導入創新、科技元素,融入在地特色文化設計,在東港大鵬灣國家風景區打造廣闊的海洋灣域燈區,東港鎮結合漁港及宗教文化的小鎮燈區,及屏東市綿延近5公里長的綵燈節河岸燈區,讓屏東成為璀璨的光之南國,迎向國際。 詳細介紹 ►  2019台灣燈會在屏東 第一次移師國境之南 大鵬灣燈區 主題樂園式燈會也是主燈所在區,區內分為農業海洋燈區、客家燈區、原住民燈區、綠能環保燈區、藝術燈區、宗教燈區、競賽花燈及317個社區關懷據點手作的萬歲光廊等。 客家燈籠隧道。 平日:周一~周四14:00-22:30(熄燈) 假日:周五~周六10:00-22:30(熄燈)  屏東燈區: 萬年溪畔 屏東綵燈節藍區-生態。 綵燈節--每日17:30 - 22:00(熄燈) 勝利星村--平日:14:00 - 22:30(熄燈) 假日:10:00 - 22:30(熄燈) 燈區以「彩虹」為主題,沿著蜿蜒市區的萬年溪打造近5公里長的光之流域,50組水上、音樂及互動科技等不同類型燈飾,呈現紅色熱情、橙色活力、黃色甜美、綠色雄偉、藍色壯闊、靛色神祕、紫色華麗等屏東風情。勝利星村另有懷舊風的燈飾,及屏東公園聖誕節燈飾。 東港小鎮燈區 東港小鎮燈區-鮪鮪到來。 小鎮燈區以海的屏東為主題,用漁港風情及宗教文化內涵規劃4個主題區,分別為張燈結綵趣、東津好風情、神遊幸福海、延平老街區。每日17:00~22:30(熄燈) 以上台灣燈會資料來源: 2019台灣燈會官網 、 i屏東~愛屏東 。 >> 順遊行程 小吃旅行-東港小鎮 東港小吃和東港人一樣,熱情澎湃...

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計 — 說服客戶與老闆、跟工程師溝通、強化設計概念的有感心理學 — 情況 1 : 為何要留那麼多空白? 害我還要滾動滑鼠(掀桌) 情況 2 : 為什麼不能直接用一頁展現? 把客戶的需求塞滿不就完工啦! (無言) 情況 3: 這種設計好像不錯,但是為什麼要這樣做? (直覺大神告訴我這樣設計,但我說不出來為什麼..) 雖然世界上有許多 GUI 已經走得又長又遠又厲害,但別以為這種古代人對話不會出現,一直以來我們只是習慣這些 GUI 被如此呈現,但為何要這樣設計我們卻不一定知道。 由於 完形心理學 歸納出人類大腦認知之普遍性的規則,因此無論是不是 UI/UX 設計師都很適合閱讀本篇文章。但還是想特別強調,若任職於傳統科技公司,需要對上說服老闆,需要平行說服(資深)工程師,那請把它收進最愛;而習慣套用設計好的 UI 套件,但不知道為何這樣設計的 IT 工程師,也可以透過本文來強化自己的產品說服力。 那就開始吧~(擊掌) 完形心理學,又稱作格式塔(Gestalt)心理學,於二十世紀初由德國心理學家提出 — 用以說明人類大腦如何解釋肉眼所觀察到的事物,並轉化為我們所認知的物件。它可說是現代認知心理學的基礎,其貫徹的概念就是「整體大於個體的總合 “The whole is other than the sum of the parts.” —  Kurt Koffka」。 若深究完整的理論將會使本文變得非常的艱澀,因此筆者直接抽取個人認為與 UI 設計較為相關的 7 個原則(如下),並搭配實際案例做說明。有興趣了解全部理論的話可以另外 Google。 1. 相似性 (Similarity)  — 我們的大腦會把相似的事物看成一體 如果數個元素具有類似的尺寸、體積、顏色,使用者會自動為它們建立起關聯。這是因為我們的眼睛和大腦較容易將相似的事物組織在一起。如下圖所示,當一連串方塊和一連串的圓形並排時,我們會看成(a)一列方塊和兩列圓形(b)一排圓形和兩排三角形。 對應用到介面設計上,FB 每則文章下方的按鈕圖標(按讚 Like / 留言Comment / 分享 Share)雖然功能各不相同,但由於它們在視覺上顏色、大小、排列上的相似性,用戶會將它們視認為...