跳到主要內容
One of the great perks of living in the San Francisco Bay Area is proximity to some amazing wine regions. Over the last couple years, I've visited vineyards in regions like Napa Valley, Sonoma Valley, Paso Robles, and even Malibu. I recently ran into a machine learning data set that has data on 6000 Portuguese wines that includes a 1-10 quality rating, which seems like a great excuse to build a neural network that can predict the 1-10 quality rating based on factors like residual sugar and alcohol content. Effectively, this neural network attempts to match the wine palate of whoever put this data set together.

Training a Neural Network with Brain.js

Brain.js is a simple npm module for building neural networks, a common machine learning model that you might see in an undergraduate AI class.
The wine data can be downloaded here. The file is a CSV that uses semi-colons (;) as a delimiter. The contents look like this:
The first 11 columns are various chemical properties of a given wine, and the 12th and final column is a "quality" score that represents how good this wine tastes according to the person who recorded this data.
"Training" is how you build a neural network. Given some training data, Brain.js builds a mathematical model for predicting the quality rating of a wine based on the chemical properties. Below is an example from the Brain.js docs about how to train and then use a neural network.
var net = new brain.NeuralNetwork();

net.train([{input: { r: 0.03, g: 0.7, b: 0.5 }, output: { black: 1 }},
           {input: { r: 0.16, g: 0.09, b: 0.2 }, output: { white: 1 }},
           {input: { r: 0.5, g: 0.5, b: 1.0 }, output: { white: 1 }}]);

var output = net.run({ r: 1, g: 0.4, b: 0 });  // { white: 0.99, black: 0.002 }
For the wine data, the input will be an object representing the chemical properties, and the output will contain one property, the quality. One key detail about Brain.js is that all inputs must be between 0 and 1, so you need to scale some of the inputs. Below is the first wine from the CSV converted into a format that Brain.js can use for training a neural network.
{ input:
   { 'fixed acidity': 0.7,
     'volatile acidity': 0.027000000000000003,
     'citric acid': 0.036,
     'residual sugar': 0.0207,
     chlorides: 0.0045,
     'free sulfur dioxide': 0.045,
     'total sulfur dioxide': 0.17,
     density: 0.1001,
     pH: 0.3,
     sulphates: 0.045,
     alcohol: 0.08800000000000001 },
  output: { quality: 0.6 } }
Below is the code for training a neural network on the first 1000 wines in the CSV.
const { NeuralNetwork } = require('brain.js');
const _ = require('lodash');
const fs = require('fs');

const raw = fs.readFileSync('./winequality-white.csv', 'utf8').split('\n');
const headers = raw[0].split(';').map(header => header.replace(/"/g, ''));

// Convert the raw data from a string into an array of objects where property
// names match the column headers.
const data = raw.
  slice(1).
  map(line => line.split(';').
  reduce((cur, v, i) => {
    // Ensure that numberic values are between 0 and 1
    // Admittedly this is a bit hacky, and I'd love to hear how machine
    // learning experts handle this.
    if (headers[i].includes('sulfur') || headers[i].includes('sugar')) {
      cur[headers[i]] = parseFloat(v) / 1000;
    } else if (headers[i].includes('alcohol')) {
      cur[headers[i]] = parseFloat(v) / 100;
    } else {
      // Quality will be 0.1-1 rather than 1-10
      cur[headers[i]] = parseFloat(v) / 10;
    }
    return cur;
  }, {}));

const net = new NeuralNetwork();
const numTrainingData = 1000;

const trainingData = data.
  slice(0, numTrainingData).
  map(obj => ({
    input: _.omit(obj, ['quality']),
    output: _.pick(obj, ['quality'])
  }));

console.log(trainingData[0]);

console.log('done training', net.train(trainingData));
Once you have trained a neural network, you can use it to estimate the quality of subsequent wines based on their chemical properties. Below is code that takes the neural network, runs it on the next 50 wines, and calculates the average difference between the neural network's prediction and the actual quality of the wine.
let error = 0;
for (let i = 0; i < 50; ++i) {
  const { quality } = net.run(_.omit(data[numTrainingData + i], ['quality']));
  error += Math.abs(quality - data[numTrainingData + i].quality);
  console.log(i, quality, data[numTrainingData + i].quality);
}
console.log('Average error', error / 50);

console.log('done');
Below is the truncated output. This rudimentary neural network gets within about 0.6 of the actual quality rating on average.
45 0.602045476436615 0.5
46 0.5928407311439514 0.5
47 0.4441471993923187 0.5
48 0.449766606092453 0.5
49 0.7137854695320129 0.6
Average error 0.06042885661125182

Serializing the Neural Network

In practice you don't want to recompute the neural network every time, because even in this simple example training the neural network takes approximately 20 seconds. You can serialize the neural network using the toJSON() function:
// Serialize the neural network as JSON to a file
fs.writeFileSync('./net.json', JSON.stringify(net.toJSON(), null, '  '));
Open up the net.json file to see what the neural network looks like. Neural networks consist of "nodes" or "neurons" that assign a weight to each input. When you train a neural network, brain.js searches to try to come up with weights that match the training data as closely as possible. Here's a sample node from the net.json file that shows the weights for each parameter.
{
  "bias": -5.532558917999268,
  "weights": {
    "fixed acidity": 1.0129427909851074,
    "volatile acidity": -3.8902039527893066,
    "citric acid": -0.4018211364746094,
    "residual sugar": -0.5149407386779785,
    "chlorides": -3.0765116214752197,
    "free sulfur dioxide": 2.4955267906188965,
    "total sulfur dioxide": -0.5537568926811218,
    "density": -1.1998544931411743,
    "pH": 3.0909314155578613,
    "sulphates": 2.17152738571167,
    "alcohol": 9.936287879943848
  }
}
You can then load the neural network from the JSON file and re-use it.
const net = new NeuralNetwork();

net.fromJSON(JSON.parse(fs.readFileSync('./net.json', 'utf8')));

// ...

let error = 0;
for (let i = 0; i < 50; ++i) {
  const { quality } = net.run(_.omit(data[numTrainingData + i], ['quality']));
  error += Math.abs(quality - data[numTrainingData + i].quality);
  console.log(i, quality, data[numTrainingData + i].quality);
}
console.log('Average error', error / 50);

Moving On

There's an npm module for just about everything, even machine learning. Brain.js is one of the older libraries. There's also a newer one by Google that supposedly has better performance called deeplearn. If you're interested in the theory of machine learning, I highly recommend Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig. R&N is the standard textbook for undergraduate AI courses and serves as an excellent introduction.

留言

這個網誌中的熱門文章

opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...

聊天機器人到底在紅什麼?三分鐘帶你了解!

聊天機器人到底在紅什麼?三分鐘帶你了解! 2017/6/14     精選轉貼     AI 、 Bot 、 聊天機器人 評論 本文原作者  優拓資訊  為新銳 AI 團隊,以 Chatbot、網路爬蟲、自然語言處理為核心技術,在資訊爆炸年代,協助企業擷取關鍵情報、槓桿社群效益、提升行銷效率、與受眾進行精準溝通。業務發展重點為  Aloha.AI  ── 商務機器人解決方案,與  Poller.AI  ── 品牌輿情監測助手。原文刊登於  yoctol.com  ,INSIDE 獲授權轉載。 優拓的共同創辦人黃鐘揚教授,本次很榮幸地受邀至台北國際電腦展開展論壇 e21FORUM 演講,以「三分鐘讓你了解聊天機器人在紅什麼?」為題,帶領聽眾從社群網路、人工智慧、數據分析等多種角度切入,介紹並探究聊天機器人 (chatbot) 的特點及其於生活與商務上的創新應用,並討論因應而生的產業發展趨勢。   不只是聊天而已!聊天機器人還有哪些功能? 常駐在 Facebook Messenger、LINE、WeChat 等通訊軟體中的聊天機器人,它們所能做到的事情,當然不僅僅是與使用者聊天而已,透過「如同聊天般的操作方式」這個特點,聊天機器人能依照建造者不同的目的、發展成具備不同功能的工具,這也顯示出除了聊天以外,聊天機器人還擁有更龐大的潛力等著被開發。 舉例來說,對於企業而言,Chatbot 是親切聰明的品牌代言人,能為訪客介紹公司的頂尖技術、案例、當前工作職缺;對於商家而言, Chatbot 則是具愛心且效率極高的門市人員,能為訪客推薦最合適的旅程、投資項目;無須另行安裝,能直接且直覺地開始互動的 Chatbot,當然也可以是整合實體空間資訊的助手,提供展場導覽、現場優惠推播等服務。 聊天機器人到底在紅什麼? 簡而言之,由於聊天機器人技術的普及,人們第一次可以輕易的把「人工智慧」應用在社群與商務上面,於是經營社群的行銷人員,可以獲得技術支持;技術人員,也可以獲得實踐技術的社群。此外,我們近幾年也觀察到以下幾個趨勢: ▲左方為 Carousel(櫥窗樣板)的應用案例,C...