跳到主要內容

內存內計算,下一代計算的新範式?

2018-12-03 14:00:06 來源:半導體行業觀察
283 點擊
最近,內存內計算成了熱門關鍵詞。今年早些時候,IBM發布了基於相變內存(PCM)的內存內計算,在此之後基於Flash內存內計算的初創公司Mythic獲得了來自軟銀領投的高達4000萬美元的B輪融資,而在中國,初創公司知存科技也在做內存內計算的嘗試。本文將對內存內計算的原理以及其市場前景做一些分析。
馮諾伊曼架構之痛
馮諾伊曼架構是計算機的經典架構,同時也是目前計算機以及處理器芯片的主流架構。在馮諾伊曼架構中,計算/處理單元與內存是兩個完全分離的單元:計算/處理單元根據指令從內存中讀取數據,在計算/處理單元中完成計算/處理,並存回內存。
馮諾伊曼架構是經典的計算機體系架構,也構成了過去近一個世紀的計算機科學的基礎。然而,馮諾伊曼架構在構建之初只是一個理論模型,在建立該模型時做了一個合理的假設就是處理器和內存的速度很接近。當然,馮諾伊曼在當時沒有辦法預測到未來集成電路發展對於計算機造成的深遠變化。計算機處理器的性能隨著摩爾定律高速發展,其性能隨著晶體管特徵尺寸的縮小而直接提升,因此在過去數十年中其性能提升可謂是天翻地覆,現在一顆手機中處理器的性能已經比30年前超級計算機中的處理器還要強。另一方面,計算機的主要內存使用的是DRAM方案,DRAM是基於電容充放電實現的高密度存儲方案,其性能(速度)取決於兩方面,即內存中電容充放電的讀取/寫入速度以及DRAM與處理器之間的接口帶寬。DRAM電容充放電的讀取/寫入速度隨著摩爾定律有一定提升,但是速度並不如處理器這麼快,另一方面DRAM與處理器之間的接口屬於混合信號電路,其帶寬提升速度主要是受到PCB板上走線的信號完整性所限制,因此從摩爾定律晶體管尺寸縮小所獲得的益處並不大。這也造成了DRAM的性能提升速度遠遠慢於處理器速度,目前DRAM的性能已經成為了整體計算機性能的一個重要瓶頸,即所謂阻礙性能提升的“內存牆”。
除了性能之外,內存對於能效比的限制也成了傳統馮諾伊曼體系計算機的一個瓶頸。這個瓶頸在人工智能應用快速普及的今天尤其顯著。這一代人工智能基於的是神經網絡模型,而神經網絡模型的一個重要特點就是計算量大,而且計算過程中涉及到的數據量也很大,使用傳統馮諾伊曼架構會需要頻繁讀寫內存。目前的DRAM一次讀寫32bit數據消耗的能量比起32bit數據計算消耗的能量要大兩到三個數量級,因此成為了總體計算設備中的能效比瓶頸。如果想讓人工智能應用也走入對於能效比有嚴格要求的移動端和嵌入式設備以實現“人工智能無處不在”,那麼內存訪問瓶頸就是一個不得不解決的問題。
內存內計算的原理
為了解決“內存牆”問題,一個最近得到越來越多關注的思路就是做內存內計算。2018年的國際固態半導體會議(ISSCC,全球最頂尖的芯片設計會議,發表最領先的芯片設計成果,稱為“芯片界的奧林匹克”)有專門一個議程,其中的論文全部討論內存內計算;到了2019年,根據最新發布的ISSCC 2019預覽,也有5篇關於內存內計算的論文,不過分散在不同的議程中。內存計算的主要改進就是把計算嵌入到內存裡面去,這樣內存就不僅僅是一個存儲器,還是一個計算器。這樣一來,在存儲/讀取數據的時候就同時完成了運算,因此大大減少了計算過程中的數據存取的耗費。
內存內計算現在還處於探索階段,有很多種具體實現方式。舉一個ISSCC 2018年論文中的例子。這個內存內計算的電路由MIT的研究組提出,主要用途是加速卷積計算。我們知道,卷積計算可以展開成帶權重的累加計算,從另一個角度來看其實就是多個數的加權平均。因此,該電路實現的就是電荷域的加權平均,其中權重(1-bit)儲存在SRAM中,輸入數據(7-bit數字信號)經過DAC成為模擬信號,而根據SRAM中的對應權重,DAC的輸出在模擬域被乘以1或者-1,然後在模擬域做平均,最後由ADC讀出成為數字信號。具體來說,由於乘法的權重是1-bit(1或-1),因此可以簡單地用一個開關加差分線來控制,如果是權重是1就讓差分線一邊的電容充電到DAC輸出值,反之則讓差分線另一邊充到這個值。平均也很簡單,幾條差分線簡單地連到一起就是在電荷域做了平均了。
當然,內存內計算的電路並不止於一種,其計算的精度也並不限於1-bit計算。但是,從以上的例子我們可以看出內存內計算的核心思想,一般是把計算都轉化為帶權重加和計算,把權重存在內存單元中,然後在內存的核心電路(如讀出電路)上做修改,從而讓讀出的過程就是輸入數據和權重在模擬域做點乘的過程,相當於實現了輸入的帶權重累加,即卷積。因為卷積是人工智能以及其他計算的核心組成部分,因此內存內計算可以被廣泛使用在這類應用中。內存內計算會使用模擬電路做計算,這也是它和傳統使用數字邏輯做計算的不同之處。
內存內計算的兩大推動力以及市場前景
人們十幾年之前就認識到了“內存牆”的問題,但是為什麼內存內計算在這兩年才火起來呢?我們認為,最近內存內計算興起的背後有兩大動力。
第一個動力是基於神經網絡的人工智能的興起,尤其是人工智能希望能普及到移動端和嵌入式設備中,這樣能效比很高的內存內計算就獲得了關注。另外,神經網絡的一個特點是對於計算精度的誤差擁有較高的容忍度,因此內存內計算的模擬計算中引入的誤差往往可以被神經網絡所接受,也可以說內存內計算和人工智能(尤其是嵌入式人工智能)可謂是天作之合。
第二個動力是新的存儲器。對於內存內計算來說,存儲器的特性往往決定了內存內計算的效率,因此當帶有新特性的存儲器出現時,往往會帶動內存內計算的發展。舉例來說,最近很火的ReRAM使用電阻調製來實現數據存儲,因此每一位的讀出使用的是電流信號而非傳統的電荷信號。這樣一來,由於電流做累加運算是非常自然而然的操作(把幾路電流直接組合在一起就實現了電流的加和,甚至無需額外電路),因此ReRAM非常適合內存內計算,也確實有不少研究組已經在做相關的研究並發表了論文。從存儲器推廣的角度,新的存儲器也願意搭上人工智能的風潮,因此新存儲器廠商也樂於看到有人做基於自家存儲器的內存內計算加速人工智能,也會幫助一起推廣內存內計算。
因為內存內計算的兩大推力是人工智能和新存儲器,因此我們看到的新存儲器產品在人工智能和新存儲器這兩個關鍵詞上至少會有一個,也有不少內存內計算項目會同時橫跨兩個關鍵詞。
內存內計算的芯片產品預計會有兩種形式。第一種形式是作為一種帶有計算功能的存儲器IP出售。這樣的帶內存內計算功能的存儲器IP可能是傳統的SRAM,也可能是eFlash,ReRAM,MRAM,PCM這樣的新存儲器。這樣的存儲器IP往往是一家做內存內計算的公司和一家做存儲器的公司(如TSMC或SMIC)聯合做推廣。
第二種形式是直接做基於內存內計算的人工智能加速芯片。例如Mythic就計劃流片做基於Flash存儲器的PCIe加速卡,通過PCIe接口和主CPU做通信,Mythic的內存芯片上存儲了權重數據,這樣當數據送到Mythic的IPU上後就可以直接讀出計算結果。這樣一來就省去了權重數據的讀取開銷。
那麼內存內計算對於人工智能芯片市場會有什麼影響呢?首先,我們看到內存內計算本質上會使用模擬計算,因此其計算精度會受到模擬計算低信噪比的影響,通常精度上限在8bit左右,而且只能做定點數計算,難以做浮點數計算。所以,需要高計算精度的人工智能訓練市場並不適合內存內計算,換句話說內存內計算的主戰場是在人工智能推理市場。即使在人工智能推理市場,由於精度的限制,內存內計算對於精度要求較高的邊緣服務器計算等市場也並不適合,而更適合嵌入式人工智能等對於能效比有高要求而對於精確度有一定容忍的市場。此外,內存內計算其實最適合本來就需要大存儲器的場合。舉例來說,Flash在IoT等場景中本來就一定需要,那麼如果能讓這塊Flash加上內存內計算的特性就相當合適,而在那些本來存儲器並不是非常重要的場合,為了引入內存內計算而加上一塊大內存就未必合適。基於這樣的分析,我們認為內存內計算有望成為未來嵌入式人工智能(如智能IoT)的重要組成部分。
結語
隨著人工智能和新存儲器的興起,內存內計算也成為了新的熱點。內存內計算利用存儲器的獨特特性,結合模擬計算直接在存儲器中完成計算,從而大大減少人工智能計算中的內存讀寫操作。由於內存內計算的精度受到模擬計算的限制,因此它最適合追求能效比且能接受一定精確度損失的嵌入式人工智能應用。

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸覺點字學習系統
2019全台精選3+個燈會,週邊順遊景點懶人包 2019燈會要去哪裡看?全台精選3+個燈會介紹、週邊順遊景點整理給你。 東港小鎮燈區-鮪鮪到來。 2019-02-15 微笑台灣編輯室 全台灣 各縣市政府 1435 延伸閱讀 ►  元宵節不只看燈會!全台元宵祭典精選、順遊景點整理 [屏東]2019台灣燈會在屏東 2/9-3/3:屏東市 · 東港鎮 · 大鵬灣國家風景區 台灣燈會自1990年起開始辦理,至2019年邁入第30週年,也是首次在屏東舉辦,屏東縣政府與交通部觀光局導入創新、科技元素,融入在地特色文化設計,在東港大鵬灣國家風景區打造廣闊的海洋灣域燈區,東港鎮結合漁港及宗教文化的小鎮燈區,及屏東市綿延近5公里長的綵燈節河岸燈區,讓屏東成為璀璨的光之南國,迎向國際。 詳細介紹 ►  2019台灣燈會在屏東 第一次移師國境之南 大鵬灣燈區 主題樂園式燈會也是主燈所在區,區內分為農業海洋燈區、客家燈區、原住民燈區、綠能環保燈區、藝術燈區、宗教燈區、競賽花燈及317個社區關懷據點手作的萬歲光廊等。 客家燈籠隧道。 平日:周一~周四14:00-22:30(熄燈) 假日:周五~周六10:00-22:30(熄燈)  屏東燈區: 萬年溪畔 屏東綵燈節藍區-生態。 綵燈節--每日17:30 - 22:00(熄燈) 勝利星村--平日:14:00 - 22:30(熄燈) 假日:10:00 - 22:30(熄燈) 燈區以「彩虹」為主題,沿著蜿蜒市區的萬年溪打造近5公里長的光之流域,50組水上、音樂及互動科技等不同類型燈飾,呈現紅色熱情、橙色活力、黃色甜美、綠色雄偉、藍色壯闊、靛色神祕、紫色華麗等屏東風情。勝利星村另有懷舊風的燈飾,及屏東公園聖誕節燈飾。 東港小鎮燈區 東港小鎮燈區-鮪鮪到來。 小鎮燈區以海的屏東為主題,用漁港風情及宗教文化內涵規劃4個主題區,分別為張燈結綵趣、東津好風情、神遊幸福海、延平老街區。每日17:00~22:30(熄燈) 以上台灣燈會資料來源: 2019台灣燈會官網 、 i屏東~愛屏東 。 >> 順遊行程 小吃旅行-東港小鎮 東港小吃和東港人一樣,熱情澎湃而且誠意滿滿,從市街找到巷裡,早餐吃到宵夜,可惜
自製直播音源線 Bird Liang   October 6, 2016   in  View Bird Liang, Chief Engineer (梁子凌 / 技術長兼工程輔導長) 負責 AppWorks 技術策略與佈署,同時主導工程輔導。人生的第一份正職工作是創業,之後在外商圈電子業中闖蕩多年,經歷過 NXP、Sony、Newport Imagining、Crossmatch 等企業,從事無線通訊、影像系統、手機、面板、半導體、生物辨識等不同領域產品開發。熱愛學習新事物,協助團隊解決技術問題。放棄了幾近退休般的生活加入 AppWorks,為的是幫助更多在創業路上的人,並重新體驗創業的熱情。台大農機系、台科大電子所畢業,熱愛賞鳥、演奏管風琴,亦是不折不扣的熱血 Maker。 隨著 Facebook 開放一般帳號直播,現在我們只要拿起手機,隨時隨地都可以開始直播。回想幾年前 AppWorks 剛開始進行 Demo Day 直播時,還要將 HDMI 訊號接進 PC 中、再編碼打進 YouTube 的複雜度,實不可同日而語。 但用手機或平板直播最大的問題往往不是影像而是聲音。iPhone 或 iPad 上的攝影機,感度和解析度早已不輸數年前的專業攝影機,只要現場光不太差,大概都可以拍出令人滿意的畫面。但直播的聲音一直是個大問題,手機上的麥克風跟人耳所聽到的聲音其實有很大的差距,在比較大的場子裡,光是仰賴內建麥克風的收音多半無法有令人滿意的效果。 在大型的活動中,現場通常會有 PA 系統,最理想的方式還是想辦法將 PA 的訊號餵進 iPad 或 iPhone 中,保證聲音乾淨又清楚,絕對不會有其它有的沒的現場音。 iPhone 的耳機孔雖然可以插帶有麥克風的耳機 (如 Apple 原廠的 EarPods),但它的訊號位準是電容式麥克風的位準。PA 控台的輸出幾乎都是 line level 的,兩者的訊號電壓相差百倍以上,我們得做個小東西來解決這個差距。 Line 與 Mic 在 mixer 上,我們常會看到輸入可以在兩種規格中切換: line level 和 mic level。Mic level 顧名思義就是從麥克風來的訊號,這個訊號的規格是從不需供電的傳統動圈麥克風來的。因為不需供電,所有的訊號都來自於聲壓