跳到主要內容

Shrinking images on Linux

Shrinking images on Linux

When creating images from existing ISOs you often need to allocate a number of MB for the image to at least fit the files that are in the ISO. Predicting the exact size of the image is hard, even for a program. In this case you will create an image that is larger than actually needed: the image is much larger than the files on the image are combined.
This post will show how to shrink an existing image to a more optimal size. We will do this on Linux, since all required tools are available there: GParted, fdisk and truncate.

Requirements

  • A Linux PC
  • Some knowledge how the terminal works will helps
  • The unoptimal image (myimage.img in this example)

Creating loopback device

GParted is a great application that can handle partition tables and filesystems quite well. In this tutorial we will use GParted to shrink the filesystem (and its accompaning partition in the partition table).
GParted operates on devices, not simple files like images. This is why we first need to create a device for the image. We do this using the loopback-functionality of Linux.
First we will enable loopback if it wasn't already enabled:
$ sudo modprobe loop
Now we can request a new (free) loopback device:
$ sudo losetup -f
This will return the path to a free loopback device. In this example this is /dev/loop0.
Next we create a device of the image:
$ sudo losetup /dev/loop0 myimage.img
Now we have a device /dev/loop0 that represents myimage.img. We want to access the partitions that are on the image, so we need to ask the kernel to load those too:
$ sudo partprobe /dev/loop0
This should give us the device /dev/loop0p1, which represents the first partition in myimage.img. We do not need this device directly, but GParted requires it.

Resize partition using GParted

Next we can load the device using GParted:
$ sudo gparted /dev/loop0
This should show a window similar to the following:

Now notice a few things:
  • There is one partition.
  • The partition allocates the entire disk/device/image.
  • The partition is filled partly.
We want to resize this partition so that is fits it content, but not more than that.
Select the partition and click Resize/Move. A window similar to the following will popup:

Drag the right bar to the left as much as possible.
Note that sometimes GParted will need a few MB extra to place some filesystem-related data. You can press the up-arrow at the New size-box a few times to do so. For example, I pressed it 10 times (=10MiB) for FAT32 to work. For NTFS you might not need to at all.
Finally press Resize/Move. You will return to the GParted window. This time it will look similar to the following:

Notice that there is a part of the disk unallocated. This part of the disk will not be used by the partition, so we can shave this part off of the image later. GParted is a tool for disks, so it doesn't shrink images, only partitions, we have to do the shrinking of the image ourselves.
Press Apply in GParted. It will now move files and finally shrink the partition, so it can take a minute or two, most of the time it finishes quickly. Afterwards close GParted.
Now we don't need the loopback-device anymore, so unload it:
$ sudo losetup -d /dev/loop0

Shaving the image

Now that we have all the important data at the beginning of the image it is time to shave of that unallocated part. We will first need to know where our partition ends and where the unallocated part begins. We do this using fdisk:
$ fdisk -l myimage.img
Here we will see an output similar to the following:
Disk myimage.img: 6144 MB, 6144000000 bytes, 12000000 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000ea37d

      Device Boot      Start         End      Blocks   Id  System
myimage.img1            2048     9181183     4589568    b  W95 FAT32
Note two things in the output:
  • The partition ends on block 9181183 (shown under End)
  • The block-size is 512 bytes (shown as sectors of 1 * 512)
We will use these numbers in the rest of the example. The block-size (512) is often the same, but the ending block (9181183) will differ for you. The numbers mean that the parition ends on byte 9181183*512 of the file. After that byte comes the unallocated-part. Only the first 9181183*512 bytes will be useful for our image.
Next we shrink the image-file to a size that can just contain the partition. For this we will use the truncate command (thanks uggla!). With the truncate command need to supply the size of the file in bytes. The last block was 9181183 and block-numbers start at 0. That means we need (9181183+1)*512 bytes. This is important, else the partition will not fit the image. So now we use truncate with the calculations:
$ truncate --size=$[(9181183+1)*512] myimage.img
Now copy the new image over to your phone, where it should act exactly the same as the old/big image.

留言

這個網誌中的熱門文章

opencv4nodejs Asynchronous OpenCV 3.x Binding for node.js   122     2715     414   0   0 Author Contributors Repository https://github.com/justadudewhohacks/opencv4nodejs Wiki Page https://github.com/justadudewhohacks/opencv4nodejs/wiki Last Commit Mar. 8, 2019 Created Aug. 20, 2017 opencv4nodejs           By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the  API Documentation . Furthermore, contribution is highly appreciated....

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...

聊天機器人到底在紅什麼?三分鐘帶你了解!

聊天機器人到底在紅什麼?三分鐘帶你了解! 2017/6/14     精選轉貼     AI 、 Bot 、 聊天機器人 評論 本文原作者  優拓資訊  為新銳 AI 團隊,以 Chatbot、網路爬蟲、自然語言處理為核心技術,在資訊爆炸年代,協助企業擷取關鍵情報、槓桿社群效益、提升行銷效率、與受眾進行精準溝通。業務發展重點為  Aloha.AI  ── 商務機器人解決方案,與  Poller.AI  ── 品牌輿情監測助手。原文刊登於  yoctol.com  ,INSIDE 獲授權轉載。 優拓的共同創辦人黃鐘揚教授,本次很榮幸地受邀至台北國際電腦展開展論壇 e21FORUM 演講,以「三分鐘讓你了解聊天機器人在紅什麼?」為題,帶領聽眾從社群網路、人工智慧、數據分析等多種角度切入,介紹並探究聊天機器人 (chatbot) 的特點及其於生活與商務上的創新應用,並討論因應而生的產業發展趨勢。   不只是聊天而已!聊天機器人還有哪些功能? 常駐在 Facebook Messenger、LINE、WeChat 等通訊軟體中的聊天機器人,它們所能做到的事情,當然不僅僅是與使用者聊天而已,透過「如同聊天般的操作方式」這個特點,聊天機器人能依照建造者不同的目的、發展成具備不同功能的工具,這也顯示出除了聊天以外,聊天機器人還擁有更龐大的潛力等著被開發。 舉例來說,對於企業而言,Chatbot 是親切聰明的品牌代言人,能為訪客介紹公司的頂尖技術、案例、當前工作職缺;對於商家而言, Chatbot 則是具愛心且效率極高的門市人員,能為訪客推薦最合適的旅程、投資項目;無須另行安裝,能直接且直覺地開始互動的 Chatbot,當然也可以是整合實體空間資訊的助手,提供展場導覽、現場優惠推播等服務。 聊天機器人到底在紅什麼? 簡而言之,由於聊天機器人技術的普及,人們第一次可以輕易的把「人工智慧」應用在社群與商務上面,於是經營社群的行銷人員,可以獲得技術支持;技術人員,也可以獲得實踐技術的社群。此外,我們近幾年也觀察到以下幾個趨勢: ▲左方為 Carousel(櫥窗樣板)的應用案例,C...