跳到主要內容

How will the GDPR impact machine learning?

How will the GDPR impact machine learning?

Answers to the three most commonly asked questions about maintaining GDPR-compliant machine learning programs.
Light structure
Light structure (source: Pixabay)
Much has been made about the potential impact of the EU’s General Data Protection Regulation (GDPR) on data science programs. But there’s perhaps no more important—or uncertain—question than how the regulation will impact machine learning (ML), in particular. Given the recent advancements in ML, and given increasing investments in the field by global organizations, ML is fast becoming the future of enterprise data science.
This article aims to demystify this intersection between ML and the GDPR, focusing on the three biggest questions I’ve received at Immuta about maintaining GDPR-compliant data science and R&D programs. Granted, with an enforcement data of May 25, the GDPR has yet to come into full effect, and a good deal of what we do know about how it will be enforced is either vague or evolving (or both!). But key questions and key challenges have already started to emerge.

1. Does the GDPR prohibit machine learning?

The short answer to this question is that, in practice, ML will not be prohibited in the EU after the GDPR goes into effect. It will, however, involve a significant compliance burden, which I’ll address shortly.
Technically, and misleadingly, however, the answer to this question actually appears to be yes, at least at first blush. The GDPR, as a matter of law, does contain a blanket prohibition on the use of automated decision-making, so long as that decision-making occurs without human intervention and produces significant effects on data subjects. Importantly, the GDPR itself applies to all uses of EU data that could potentially identify a data subject—which, in any data science program using large volumes of data, means that the GDPR will apply to almost all activities (as study after study has illustrated the ability to identify individuals given enough data).
When the GDPR uses the term “automated decision-making,” the regulation is referring to any model that makes a decision without a human being involved in the decision directly. This could include anything from the automated “profiling” of a data subject, like bucketing them into specific groups such as “potential customer” or “40-50 year old males,” to determining whether a loan applicant is directly eligible for a loan.
As a result, one of the first major distinctions the GDPR makes about ML models is whether they are being deployed autonomously, without a human directly in the decision-making loop. If the answer is yes—as, in practice, will be the case in a huge number of ML models—then that use is likely prohibited by default. The Working Party 29, an official EU group involved in drafting and interpreting the GDPR, has said as much, despite the objections of many lawyers and data scientists (including yours truly).
So why is interpreting the GDPR as placing a ban on ML so misleading?
Because there are significant exceptions to the prohibition on the autonomous use of ML—meaning that “prohibition” is way too strong of a word. Once the GDPR goes into effect, data scientists should expect most applications of ML to be achievable—just with a compliance burden they won’t be able to ignore.
Now, a bit more detail on the exceptions to the prohibition.
The regulation identifies three areas where the use of autonomous decisions is legal: where the processing is necessary for contractual reasons, where it’s separately authorized by another law, or when the data subject has explicitly consented.
In practice, it’s that last basis—when a data subject has explicitly allowed their data to be used by a model—that’s likely to be a common way around this prohibition. Managing user consent is not easy. Users can consent to many different types of data processing, and they can also withdraw that consent at anytime, meaning that consent management needs to be granular (allowing many different forms of consent), dynamic (allowing consent to be withdrawn), and user friendly enough that data subjects are actually empowered to understand how their data is being used and to assert control over that use.
So, does the GDPR really prohibit the use of ML models? Not completely - but it will, in many of ML’s most powerful use cases, make the deployment and management of these models and their input data increasingly difficult.
Receive weekly insight from industry insiders—plus exclusive content, offers, and more on the topic of data

2. Is there a “right to explainability” from ML?

This is one of the most common questions I receive about the GDPR, so much so that I wrote an entire article devoted to the subject last year. This question arises from the text of the GDPR itself, which has created a significant amount of confusion. And the stakes for this question are incredibly high. The existence of a potential right to explainability could have huge consequences for enterprise data science, as much of the predictive power of ML models lies in complexity that’s difficult, if not impossible, to explain.
Let’s start with the text.
In Articles 13-15 of the regulation, the GDPR states repeatedly that data subjects have a right to “meaningful information about the logic involved” and to “the significance and the envisaged consequences” of automated decision-making. Then, in Article 22 of the regulation, the GDPR states that data subjects have the right not to be subject to such decisions when they’d have the type of impact described above. Lastly, Recital 71, which is part of a non-binding commentary included in the regulation, states that data subjects are entitled to an explanation of automated decisions afterthey are made, in addition to being able to challenge those decisions. Taken together, these three provisions create a host of new and complex obligations between data subjects and the models processing their data, suggesting a pretty strong right to explainability.
While it is possible, in theory, that EU regulators could interpret these provisions in the most stringent way—and assert that some of the most powerful uses of ML will require a full explanation of the model’s innerworkings—this outcome seems implausible.
What’s more likely is that EU regulators will read these provisions as suggesting that when ML is used to make decisions without human intervention, and when those decisions significantly impact data subjects, those individuals are entitled to some basic form of information about what is occurring. What the GDPR calls “meaningful information” and “envisaged consequences” will likely be read within this context. EU regulators are likely to focus on a data subject’s ability to make informed decisions about the use of their data—basically, the level of transparency available to the data subject—based on information about the model and the context within which it’s deployed.

3. Do data subjects have the ability to demand that models be retrained without their data?

This is perhaps one of the most difficult questions to answer about the impact of GDPR on ML. Put another way: if a data scientist uses a data subject’s data to train a model, and then deploys that model against new data, does the data subject have any right over the model that their data helped to originally train?
As best as I can tell, the answer is going to be no, at least in practice—with a very theoretical exception. To understand why, I’ll start with the exception.

SAFARI

Join Safari. Get a free trial today and find answers on the fly, or master something new and useful.
Learn more 
Under the GDPR, all uses of data require a legal basis in processing, and Article 6 of the regulation sets forth six corresponding bases. The two most important are likely to be the “legitimate interest” basis (where the interests of the organization justify specific uses of that data, which might cover a use like fraud prevention) and where the user has explicitly consented to the use of that data. When the legal basis for the processing is the latter, the data subject will retain a significant degree of control over that data, meaning they can withdraw consent at any time and the legal basis for processing that data will no longer remain.
So, if an organization collects data from a data subject, the user consents to have their data used to train a particular model, and then the data subject later withdraws that consent, when could the user force the model to be retrained on new data?
The answer is only if that model continued to use that users’ data. As the Working Party 29 has specified, even after consent is withdrawn, all processing that occurred before the withdrawal remains legal. So, if the data was legally used to create a model or a prediction, whatever that data gave rise to may be retained. In practice, once a model is created with a set of training data, that training data can be deleted or modified without affecting the model.
Technically, however, some research suggests that models may retain information about the training data in ways that could allow the discovery of the original data even after training data has been deleted, as researchers Nicolas Papernot and others have written about extensively. This means that in some circumstances, deleting the training data without retraining the model is no guarantee that the training data could not be rediscovered, or no guarantee that the original data isn’t, at least in some senses, still being used.
But how likely is training data going to be rediscovered through a model? Pretty unlikely.
To my knowledge, rediscovery of this sort has only been conducted in academic environments that are pretty far removed from the everyday realities of enterprise data science. It’s for this reason that I don’t expect models to be subject to constant demands of being retrained on new data due to the GDPR. Though this is theoreticallya possibility, it seems to be an edge case that regulators and data scientists will only have to address if this specific type of instance becomes more realistic.
All that said, there’s a huge amount of nuance to all these questions—and future nuances will surely arise. With 99 Articles and 173 Recitals, the GDPR is long, complex, and likely to get more complex over time as its many provisions are enforced.
At this point, however, at least one thing is clear: thanks to the GDPR, lawyers and privacy engineers are going to be a central component of large-scale data science programs in the future.

留言

這個網誌中的熱門文章

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示

2017通訊大賽「聯發科技物聯網開發競賽」決賽團隊29強出爐!作品都在11月24日頒獎典禮進行展示 LIS   發表於 2017年11月16日 10:31   收藏此文 2017通訊大賽「聯發科技物聯網開發競賽」決賽於11月4日在台北文創大樓舉行,共有29個隊伍進入決賽,角逐最後的大獎,並於11月24日進行頒獎,現場會有全部進入決賽團隊的展示攤位,總計約為100個,各種創意作品琳琅滿目,非常值得一看,這次錯過就要等一年。 「聯發科技物聯網開發競賽」決賽持續一整天,每個團隊都有15分鐘面對評審團做簡報與展示,並接受評審們的詢問。在所有團隊完成簡報與展示後,主辦單位便統計所有評審的分數,並由評審們進行審慎的討論,決定冠亞季軍及其他各獎項得主,結果將於11月24日的「2017通訊大賽頒獎典禮暨成果展」現場公佈並頒獎。 在「2017通訊大賽頒獎典禮暨成果展」現場,所有入圍決賽的團隊會設置攤位,總計約為100個,展示他們辛苦研發並實作的作品,無論是想觀摩別人的成品、了解物聯網應用有那些新的創意、尋找投資標的、尋找人才、尋求合作機會或是單純有興趣,都很適合花點時間到現場看看。 頒獎典禮暨成果展資訊如下: 日期:2017年11月24日(星期五) 地點:中油大樓國光廳(台北市信義區松仁路3號) 我要報名參加「2017通訊大賽頒獎典禮暨成果展」>>> 在參加「2017通訊大賽頒獎典禮暨成果展」之前,可以先在本文觀看各團隊的作品介紹。 決賽29強團隊如下: 長者安全救星 可隨意描繪或書寫之電子筆記系統 微觀天下 體適能訓練管理裝置 肌少症之行走速率檢測系統 Sugar Robot 賽亞人的飛機維修輔助器 iTemp你的溫度個人化管家 語音行動冰箱 MR模擬飛行 智慧防盜自行車 跨平台X-Y視覺馬達控制 Ironmet 菸消雲散 無人小艇 (Mini-USV) 救OK-緊急救援小幫手 穿戴式長照輔助系統 應用於教育之模組機器人教具 這味兒很台味 Aquarium Hub 發展遲緩兒童之擴增實境學習系統 蚊房四寶 車輛相控陣列聲納環境偵測系統 戶外團隊運動管理裝置 懷舊治療數位桌曆 SeeM智能眼罩 觸...
2019全台精選3+個燈會,週邊順遊景點懶人包 2019燈會要去哪裡看?全台精選3+個燈會介紹、週邊順遊景點整理給你。 東港小鎮燈區-鮪鮪到來。 2019-02-15 微笑台灣編輯室 全台灣 各縣市政府 1435 延伸閱讀 ►  元宵節不只看燈會!全台元宵祭典精選、順遊景點整理 [屏東]2019台灣燈會在屏東 2/9-3/3:屏東市 · 東港鎮 · 大鵬灣國家風景區 台灣燈會自1990年起開始辦理,至2019年邁入第30週年,也是首次在屏東舉辦,屏東縣政府與交通部觀光局導入創新、科技元素,融入在地特色文化設計,在東港大鵬灣國家風景區打造廣闊的海洋灣域燈區,東港鎮結合漁港及宗教文化的小鎮燈區,及屏東市綿延近5公里長的綵燈節河岸燈區,讓屏東成為璀璨的光之南國,迎向國際。 詳細介紹 ►  2019台灣燈會在屏東 第一次移師國境之南 大鵬灣燈區 主題樂園式燈會也是主燈所在區,區內分為農業海洋燈區、客家燈區、原住民燈區、綠能環保燈區、藝術燈區、宗教燈區、競賽花燈及317個社區關懷據點手作的萬歲光廊等。 客家燈籠隧道。 平日:周一~周四14:00-22:30(熄燈) 假日:周五~周六10:00-22:30(熄燈)  屏東燈區: 萬年溪畔 屏東綵燈節藍區-生態。 綵燈節--每日17:30 - 22:00(熄燈) 勝利星村--平日:14:00 - 22:30(熄燈) 假日:10:00 - 22:30(熄燈) 燈區以「彩虹」為主題,沿著蜿蜒市區的萬年溪打造近5公里長的光之流域,50組水上、音樂及互動科技等不同類型燈飾,呈現紅色熱情、橙色活力、黃色甜美、綠色雄偉、藍色壯闊、靛色神祕、紫色華麗等屏東風情。勝利星村另有懷舊風的燈飾,及屏東公園聖誕節燈飾。 東港小鎮燈區 東港小鎮燈區-鮪鮪到來。 小鎮燈區以海的屏東為主題,用漁港風情及宗教文化內涵規劃4個主題區,分別為張燈結綵趣、東津好風情、神遊幸福海、延平老街區。每日17:00~22:30(熄燈) 以上台灣燈會資料來源: 2019台灣燈會官網 、 i屏東~愛屏東 。 >> 順遊行程 小吃旅行-東港小鎮 東港小吃和東港人一樣,熱情澎湃...

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計

完形心理學!?讓我們了解“介面設計師”為什麼這樣設計 — 說服客戶與老闆、跟工程師溝通、強化設計概念的有感心理學 — 情況 1 : 為何要留那麼多空白? 害我還要滾動滑鼠(掀桌) 情況 2 : 為什麼不能直接用一頁展現? 把客戶的需求塞滿不就完工啦! (無言) 情況 3: 這種設計好像不錯,但是為什麼要這樣做? (直覺大神告訴我這樣設計,但我說不出來為什麼..) 雖然世界上有許多 GUI 已經走得又長又遠又厲害,但別以為這種古代人對話不會出現,一直以來我們只是習慣這些 GUI 被如此呈現,但為何要這樣設計我們卻不一定知道。 由於 完形心理學 歸納出人類大腦認知之普遍性的規則,因此無論是不是 UI/UX 設計師都很適合閱讀本篇文章。但還是想特別強調,若任職於傳統科技公司,需要對上說服老闆,需要平行說服(資深)工程師,那請把它收進最愛;而習慣套用設計好的 UI 套件,但不知道為何這樣設計的 IT 工程師,也可以透過本文來強化自己的產品說服力。 那就開始吧~(擊掌) 完形心理學,又稱作格式塔(Gestalt)心理學,於二十世紀初由德國心理學家提出 — 用以說明人類大腦如何解釋肉眼所觀察到的事物,並轉化為我們所認知的物件。它可說是現代認知心理學的基礎,其貫徹的概念就是「整體大於個體的總合 “The whole is other than the sum of the parts.” —  Kurt Koffka」。 若深究完整的理論將會使本文變得非常的艱澀,因此筆者直接抽取個人認為與 UI 設計較為相關的 7 個原則(如下),並搭配實際案例做說明。有興趣了解全部理論的話可以另外 Google。 1. 相似性 (Similarity)  — 我們的大腦會把相似的事物看成一體 如果數個元素具有類似的尺寸、體積、顏色,使用者會自動為它們建立起關聯。這是因為我們的眼睛和大腦較容易將相似的事物組織在一起。如下圖所示,當一連串方塊和一連串的圓形並排時,我們會看成(a)一列方塊和兩列圓形(b)一排圓形和兩排三角形。 對應用到介面設計上,FB 每則文章下方的按鈕圖標(按讚 Like / 留言Comment / 分享 Share)雖然功能各不相同,但由於它們在視覺上顏色、大小、排列上的相似性,用戶會將它們視認為...